FINAL. REPORT

on the completion of the contract 170895W0281
Integrated Collaborative Model in Research and Education with
Emphasis on Small Satellite Technology

Supported by the European Office of Aerospace Research and

Development (EOARD), United States Air Force
223/231 Old Marylebone Road, London NW1 5STH UK

Type of Proposal: Response to US Government Broad Agency Announcement (BAA)

Principal Investigator:
Prof. Péter ARATO, Dr. Sc.
Head of Department
Department of Process Control
Technical University of Budapest
Miegyetem rkp. 9
H-1521 Budapest
Phone: (361) 463 2699
Fax: (361) 463 2204
e-mail: arato@fsz.bme.hu

Contents

Detailed description and text book of curriculum on high-level logic synthesis A
Description and user's manual of the multiuser educational design tool PIPE B
Standard benchmark set solved in the frame of the curriculum C
Experiences and statistics of the curriculum D
Developing a VLSI module generator as a part of a collaborative engineering curriculum E

Budapest, January, 1996

19990204 017

Ao Y1105 0946




REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503,

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE

January 1996

3. REPORT TYPE AND DATES COVERED

Final Report

4. TITLE AND SUBTITLE

Integrated Collaborative Model in Research and Education with Emphasis on Small Satellite

Technology

6. AUTHOR(S)

Prof. Peter Arato

5. FUNDING NUMBERS

F6170895W0281

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Technical University of Budapest

Building R, Muegyetem rkp.9

Budapest H-1521
Hungary

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

EOARD
PSC 802 BOX 14
FPO 09499-0200

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

SPC 95-4025

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

A

13. ABSTRACT (Maximum 200 words)

This report results from a contract tasking Technical University of Budapest as follows: Develop an integrated, collaborative model in research
and education with emphasis on small sateliite technology.

14. SUBJECT TERMS

EOARD

15. NUMBER OF PAGES

Too many to count

16. PRICE CODE
N/A

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19, SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

298-102



HIGH-LEVEL LOGIC SYNTHESIS

Detailed description and text book of the curriculum
at the Department of Process Control, Faculty of Electrical Engineering and
- Informatics, Technical University of Budapest

Edited by
Péter Arato

Authors:
Péter Arato, Istvan Jankovits, Tamas Visegrady

Budapest, 1996




Contents

. Introduction
2. Elementary Operation Graph (EOG)
. Reducing the restarting period

3.1. Inserting buffers

3.2. Applying multiple copies of operations
3.3. Combining the methods

3.4. Symbolic representation of recursive loops
3.5. Handling of conditional branches

. Synchronisation
. Examples for applying the algorithms RESTART and SYNC

5.1. Example 1
5.2. Example 2

. Scheduling as arrangement of synchronizing delay effects
. Allocation

7.1. Covering of non concurrent operations
7.2. Topological cover of operations

. Multiple-process recursive loops

8.1. Overlapped (pipelined) utilisation of recursive loops
8.2. Loop scheduling

8.3. Classification of recursive problems

8.4. External synchronisation

9. Control principles

9.1. Centralized control path
9.2. Distributed control path

10. Scheduling methods

10.1. Stages of scheduling and allocation

10.2. Initial allocation

10.3. Initial approximation of the optimal solution

10.4. Scheduling
10.4.1. Scheduling using Integer Linear Programming (ILP)
10.4.2. List scheduling

10.4.3. Practical applications of list scheduling with hardware constraints

10.4.4. Force-directed scheduling
10.5. Conditional execution
10.5.5. Worst-case model
10.5.2. Probability-based model
10.5.3. Realisation
10.6. Examples

References
For further reading

67
71
73
74
74
75
77
98
99




1. Introduction

The high-speed digital signal processing and most of the real time applications require special-
purpose hardware units executing a special task or being able to solve a limited problem set.
Due to the technological development, the size and the price of such units are being reduced but
the speed and the complexity of the executable tasks are increasing. The functional parts of the
units are the data path consisted of processors and the data connections between them and the
control part co-ordinating the data path. One of the ways of increasing the processing speed is
the pipeline mode enabling to introduce new input data before obtaining the results for the
previous ones. The frequency of the data introduction expresses how often the unit can be
restarted with new input data. This restarting period determines the throughput of the unit. The
longest time collapsing from the introduction of an input data until receiving the result calculated
onit is called the latency of the unit. Reducing the restarting period may cause a longer latency.
Based on the problem to be solved by the special-purpose unit, defining the processors, the data
connections and the control part under several constraints (speed, cost, size, technology, etc.) is
the structure design. There are many commercial computer-aided design (CAD) tools
(VIEWLOGIC, LOG/IC, ABEL, XILINX, CADENCE, etc.) starting with the structure as input
and yielding a complete documentation for fabricating the unit (layout for VLSI ASIC, FPGA
programs, etc.). In most cases, the input of these tools is a register transfer level (RTL)
description of the structure. Among the RTL structural descriptive languages, VHDL is the most
wide-spread and standardized. The procedure from the structural description to the realization in
silicon is called silicon compilation and can be executed by commercial CAD tools called silicon
compilers.

Obviously mény different structures can be designed for a given task or problem set to be solved. |
Designing an advantageous structure for silicon compilation is called high-level synthesis (HLS)
which starts with a specification of the problem to be solved by the unit and provides the RTL
description of the structure. Based on the initial specification, a behavioral prescription is
generated firstly which refers to fictive elementary operations of the problem to be solved.
There are many variations how to split a problem into elementary operations, therefore the
effectiveness of the HLS procedure is strongly influenced by this step. Unfortunately, the optimal
behavioral prescription as a decomposition cannot be generated without trials and heuristics. The
most advantageous formal specification of the behavioral prescription is a dataflow-like
representation which is easy to be described also by VHDL on its behavioral level. The next step
of the HLS is to schedule and synchronize the elementary operations by a proper control in
order to fulfill the throughput requirementé without violating the other constraints (available
building blocks as hardware resources, technology, etc.). Based on a schedule, the processors can
be specified by constructing proper subsets of elementary operations executable by the same
processor. This step of the HLS is called allocation which covers the elementary operations by a




set of real processors already representing the structural design. The allocation constraints may
require identical elementary operations in the same processors, or a limited complexity of the
processors, or a regular structure (systolie array), etc. Each of these constraints may need
different schedules for a beneficial structure. Therefore, the scheduling and the allocation steps are
not independent of each other and trials and heuristics could not be avoided for finding an optimal
solution. Each step of the HLS involves NP-complete problems. In this sense, no systematic
method can be formulated for a global optimum in the HLS. However, there exist a lot of
approaching methods for finding locally optimal or simply beneficial solutions in the steps of the
HLS separately. These HLS methods are very important and efficient, since they usually yield a
more advantageous stucture for the silicon compilation than a structure defined by intuition. After
having defined the structure, almost all the freedom of the behavioral prescription is lost. The
HLS methods are dedicated to control this freedom-loosing step by step in order to provide a
beneficial structure for the further design phasis.

Based on the above considerations, Figure I illustrates the main steps of HLS.
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Figure I

The main steps of high-level synthesis

In this book, models and methods are presénted for the high-level logic synthesis of pipeline
structures. The problem to be solved by the structure is initially split into elementary theoretical
operations with arbitrary duration times. The behavioral prescription of this system is based on a
dataflow-like representation which provides an easy way to formulate the scheduling and
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allocation steps of the methods. In the basic method presented firstly, the pipeline mode needs no
extra efforts and the method ensures a restarting period which can be given in advance. The
mobility and scheduling of the elementary theoretical operations are represented by inserting extra
buffer registers into the dataflow-like data path and a structural pipelining can be established by
applying extra copies of some operations. The minimal number of buffers to be inserted, the
optimal selection of the operational units to be applied in multiple copies and the minimal number
of the required copies are the main goals in the first design phase. Based on these results, the
second part of the method provides a solution to the resource allocation problem. It is proven that
the concurrence of two elementary operations can be considered as a compatibility relation
between them. Thus, a proper cover of the non-concurrent operations can represent the hardware
resources 1. e. the real processors. Calculating the cover, several constraints for the types of
processors and the data path structure can be taken into consideration.

Besides the basic model and method, the well-known HLS methods (list scheduling, force-
directed scheduling, ILP method) are also presented based on the most relevant references on this
field. v

In the appendix, the usage of a HLS CAD software tool is illustrated on standard benchmark
problems.




2. The Elementary Operation Graph (EOG)

The problem to be solved can be consideredas a sequence of elementary operations between the
input (x1,..xn) and the output data (yl..ym). The data connections and the elementary
operations represent a principal data path for the problem to be solved. The control of this
principal data path can be imagined as a centralized counter or simple distributed handshake units
(shown later). The pipeline scheduling and allocation are accomplished on the principal data path
and the resulting structure also involves the control specification. The principal data path is
assumed to be synchronized by a clock signal, which also influences of the elementary operations,
i. e. the duration or execution time is specified by the number of the clock periods between the
beginning and the end of the operation.

yl=x2-x1*w
a y2=x2+x1*w

b Figure 1

a: The problem to be solved, b: A data-flow representation, c: The Elementary Operation -
Graph (EOQG), d: Notations for EOG

A simple graph representation of the principal data path is illustrated in Figure 1 for the basic cell
of a fast Fourier-transformation algorithm as the problem to be solved. Applying the notation of
Figure 1.d, the numbers at the inputs of the elementary operations e(i) of the EOG refer to the
points of time, at which the first data arrive on these inputs. For example, v(2,1)=10 on the left
input of e(2), because the first data arrives from e(1) in the 10-th clock cycle. In this case, (1) is
the predecessor of e(2) (in notation: e(1)->e(2)) and t(1)=10 involves that e(1) provides its first
output in the 10-th clock cycle. The elementary operations of the EOG are assumed to have a
dataflow-like character [7]: '

a./ e(i) is started only after having finished every e(j), for which e(j)->e(i) holds.

b./ e(i) requires all its input data during the whole duration time t(i).

c./ e(i) may change its output during the whole duration time t(i).

d./ e(i) holds its actual output stable until its next start.




For the sake of simplicity, each e(i) in the EOG (each node) may have only one output data
(leaving edge) and at most two input data (arriving edge) except the conditional branches (shown
later). If the output supplies several inputs; then several edges may represent the same single
output.

The latest first output of the whole EOG determines the latency (L) of the principal data path. In
Figure 1.c, L=15. In a pipeline mode, the second input data of the EOG is introduced earlier than
L. In this way, the cyclic restarting with new input data occurs more frequently than the period
determined by L. The pipeline mode means that the restarting period (R) is shorter than L.
Thus, the throughput for input data séquences can be increased depending on the value of R. It is
obvious, that there are some limitations for decreasing the value of R, because the duration times
of the operations in the EOG and the data connections strongly influence the earliest acceptance
of the new data. In the next chapters, a method will be outlined for achieving a desired restarting
period by some modifications of the EOG.




3. Reducing the restarting period

3.1. Inserting buffers i
Let it be assumed that the EOG does not contain loops. In this case, the EOG can be considered
as a simple assembly of independent sequences of operations starting with an operation at the

input of the EOG and ending with an operation at the output of the EOG. Let these sequences be
called transfer sequences (TS).
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Elementary operation graph for illustrating  a: A fragment of a transfer sequence
the transfer and busy time sequences b: The new busy times after inserting the extra
buffer register

c: A symbolic notation for the buffer register
inserted additionally for reducing the re-
starting period

The EOG in Figure 2 involves the TS-s, as follows:

S(1,1)= e(1),e(2),e(3)

S(1,2)=e(1),e(2),e(5),e(6),e(7)

S(4,1)=e(4,1)=e(4),e(5),e(6),e(7)  or with a simplified notation:

S(1,1)=1,2,3

S(1,2)=1,2,5,6,7

S(4,1)=4,5,6,7

The notation S(i,k) means the k-th TS beginning with e(i).




Each S(i,k) involves a sequence of duration times D(i,k). For example, D(4,1) belongs to S(4,1):
D(4,1)=t(4),t(5),t(6),t(7) or simply D(4,1)=4,2,3,2
If e(i)->e(j) then according to conditionsb and c in the previous chapter, e(i) must not be
restarted with new input data more frequently than the time period t(i)+t(j) allows it. Otherwise,
e(j) could not receive stable input data during its whole duration time. Thus, e(i) can be
considered in a busy state during the time domain q(i)=t(i)+t(j). In Figure 2, the values of q(i) are
given on the left side of the nodes. Note, that q(2) has two different values depending on the
successor operations e(3) or e(5), and for the e(i)-s driving directly the outputs of the EOG,
t(j)=0 is considered. Thus, to each S(i,k), a busy time sequence Q(i,k) can be ordered. For
example: '
Q(1,1)=q(1),9(2),a3) ie. 58,5
Q(1,2)=q(1),9(2),9(5),q(6),q(7) ie. 5,5,5,5,2, where q(2) occurs with different values
depending on the TS.
If each S(i,k) is considered separately, then the above constraints does not allow to restart it in
shorter time periods than the maximal value in Q(i,k). In this sense, the shortest restarting period
minR(i,k) of S(i,k) can be expressed:
R(,kK)>=maxQ(i,k)+1
minR(i,k)=maxQ(i,k)+1, where +1 stands for an extra clock cycle to properly separate the
restarting periods.
According to Figure 2: minR(1,1)=9

minR(1,2)=6

minR(4,1)=7
It is trivial that the minimal restarting period for the whole EOG is:
minR=max(minR(i,k))=max(maxQ(i,k)+1).
In Figure 2: minR=9
To reduce the value of minR, additional buffer registers may be inserted into the EOG. The
principle of the method is illustrated on a fragment of a TS in Figure 3. By inserting a buffer
register as an additional special operation e(p) with t(p)=1, the busy time of e(h) can be reduced
if t(j)>1. Let it be assumed that max(Q(i,k))=q(h) and t(h)>1 and t(j)>1 hold before inserting the
buffer. In this case, q(h)'<q(h) holds after the insertion of the buffer and so the modified value of
minR(i,k) can be smaller than it was originally. This way of reducing the restarting period by
inserting a buffer after e(h) cannot be effective any more if max(Q(i,k))=t(h)+1 has been
achieved. If e(h) has no successor i.e. it produces one of the outputs of the whole EOG, then
q(h)=t(h) is interpreted [7], and so the buffer insertion after e(h) has no sense. Thus, the minimal
value of the restarting period obtainable by buffer insertion is:
minR=max(maxD(i,k)+2)
To achieve this limit, a buffer register is required after each e(h) having a busy time q(h) greater
than minR-1 and having no successor operation with a duration time 1 excepted the e(h)-s at the
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output of the EOG [7],[8]. In Figure 4, the only necessary buffer insertion for the EOG in Figure
2 is illustrated providing minR=5+2=7. It is trivial that the latency of the EOG may increase in
consequence of inserting buffers, but this™is not the case in Figure 4, since the latency is
determined by the longest transfer sequence i. e. ending with y2 which is not affected by the
buffer insertion.

S[art
{0
fTL:i+l
y e(i) has no successor? 40_‘
S
—R<t(i)+1 Y _q@>R-1 "
|
— R<t(i)+2
Buffer ipsertion after e(i)
n - i
i Ly

n ) y
)I( minR <=

R cannot be achieved by
buffer insertion

Figure 4 K

The modified EOG of Figure 2 by Stop
inserting a buffer for achieving minR=7

Figure 5

The flow diagram of the algorithm SEPTUN
(R denotes the desired restarting period, N is
the number of the operations in EOG)

Based on the principle outlined above, a simple algorithm can be formulated for achieving a
desired value of the restarting period R by inserting the fewest pieces of buffers. This algorithm is
illustrated by the flow diagram in Figure 5 and called SEPTUN, since it is derived from the
separate tuning of the transfer sequences as shown above.

3.2. Applying multiple copies of operations

To achieve a shorter restarting period than the value minR obtainable by buffer insertion, multiple
copies of some operations must be applied. Let it be assumed that the desired restarting period for
the transfer sequence in Figure 6.a is R=8. Applying the algorithm SEPTUN, the buffer insertion




can provide only minR=22 as it is shown in Figure 6.b. It can be seen that the limitation of the
further reduction is represented by e(3).

e Multiple copies are
required for the further
reduction of R

minR=22

R=8 is desired

a

Figure 6
a: A transfer sequence with a desired value of R=8
b: The buffer insertion after applying SEPTUN

Applying multiple copies of e(3) and the buffer on its input may allow the further reduction of the
restaﬁing period if a proper control is assumed (shown later). Let this situation be examined in
Figure 7. If the control of the structure ensures that the input buffers of the copies are restarted
with new data periodically after each other, then the arriving times of the first data can be
expressed as follows:

v(i(2),h)=v(i(1),h)+R

v(i(3),h)=v(i(1),h)+2*R

v(i(e(i),h)=v(i(i),h)+(c(i)-1)*R




So, the first copy receives the first data at v(i(1),h) and its next data arrives at v(i(1),h)+c(i)*R.
Obviously, each copy has a time interval of ¢(i)*R between its two subsequent data. According to
the busy time condition )

 c(i)*Ro=t(i)+t(j)+1
must hold. Thus, for a desired R, the minimal required value of ¢(i) can be expressed as:

c()=[(t()+t()+1))/R],

where the symbol [...] denotes the smallest integer which is greater or equal to the value of the
expression within these brackets.

(i)

— V(1))
| i(1)

Figure 7

Replacing e(1) by c(i) copies
Note that each copy of e(i) needs an extra buffer at its input, since otherwise the reduced
restarting period allowable only by applying multiple copies would hurt the busy time condition
assumed for the elementary operations. Without these input buffers, a new data would change the

inputhof a previous copy too early. A proper control (shown later) is to be applied for enabling
only actual input buffer each restarting period.

3.3 Combining the methods
If the algorithm SEPTUN inserts a buffer between e(i) and e(j), then for further reduction of the
restarting period, at least

c(i)=[(t(i)+2)/R]. .
copies of e(i) are required to achieve the desired value of R. It is trivial that this buffer can be left
out without increasing the minimal number of copies if

[(t(@)+2)/R]=[(t(i)+t(j)+1)/R] holds.
Considering again the transfer sequence in Figure 6, the desired value R=8 requires at least

10




[(20+1+1)/8]=3
copies of e(3). In this case [(20+4+1/8)]>[(20+2)/8], therefore the buffer register between e(3)
and e(4) cannot be neglected without increasing the required number of copies for e(3).
It may occur that a buffer inserted by SEPTUN is connected directly to multiplied operations
only. Obviously, such buffers can always be neglected, since the unavoidable input buffers of the
multiple copies can take over their tasks,
Generally, it can be assumed that inserting buffers is not as expensive as applying multiple copies.
Therefore, the reduction of the pipeline restarting period should be started by the SEPTUN
algorithm and applying multiple copies is only the next step, if the desired value of R cannot be
achieved by SEPTUN alone. In this case, the 6ptimality in realizing a desired value of the
restarting period can be formulated, as to insert the minimal number of buffer registers and
applying as few copies as possible. For this aim, SEPTUN can easily be modified and completed,
as shown in Figure 8 by the flow diagram of the algorithm called RESTART. It can be seen that
preserving the buffers inserted by the SEPTUN algorithm, the minimal value of the busy time
cannot be smaller than 2 in an EOG without a recursive loop (shown later), since an inserted
buffer cannot represent a shorter busy time than 2. Thus, the shortest restarting period obtainable
by the algorithm RESTART would be 3 without the last step before the lower stop label. This
step, however, neglects all of the buffers inserted by SEPTUN, if each operation becomes to be
multiplied. This is always the case if R=1 is desired in a loopless EOG, i. e. each operation is
replaced by e(i)=[(t(i)+t(j)+1)/1]=q(i)+1 copies.

3.4. Symbolic representation of recursive loops
Recursive loops in an EOG require special handling, because the nature of a loop represents the
lower limit in reducing the pipeline restarting period. In Figure 9, a symbolic loop-representation
is illustrated. It is trivial that the first operation of the loop can start to process new data only after
the result obtained with previous data has already arrived from the last operation of the loop.
Therefore, the duration of the loop is the sum of all durations inside the loop. In Figure 9:

"T(i)=t(k)+t(l)+t(m)+t(n).
Prescribing an extra clock cycle for the proper separation, the loop limits the restarting period to
T(i)+1. In case of more than one loops in an EOG

minR>=maxT(i)+1 :

holds. In the symbolic representation, the loop e(r(i)) is considered as a single operation during
the calculation of minR, but it is assumed to be devided into four parts e(r(i))/1, e(r(i))/2,
e(r(i))/3, e(r(i))/4. Following from the recursive character, the pipeline restarting period of these
parts cannot be made shorter by inserting buffers between them or by multiplicating them.
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Figure 8
The flow diagram of the algorithm RESTART. (R denotes the desired restarting period,
N is the number of operations in EOG before the buffer insertion and N' is it after that).




Emphasizing this fact, the loop parts are symbolized by squares instead of circles as shown in
Figure 9. Obviously, a recursive loop cannot consist of a single operation only, since a direct feed-
back from the output to the input of the same operation would hurt the constraint requiring stable
input data during the whole duration time. This conflict can be eliminated in EOG by establishing
the feed-back of the single operation through a buffer register inserted at its output.
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(i)/3
t(m)

Figure 9

Symbolic representation of a recursive loop

3.5. Handling of conditional branches

Conditional branches in an EOG do not need special handling, since the condition checking can be
considered as a special operation, the result of which enables the next operations receiving the
conditions formally as normal additional data inputs. In this way, alternative sections are
generated in the transfer sequences without any changes in the formal handling of the EOG except
during the allocation procedure (shown later). In Figure 10, the symbolic representation of a
simple conditional branch is illustrated. The condition checking is a comparator in this case and
the alternative sections are closed by a multiplexer (MUX) operation which is also controlled by
the output of the condition checking operation. The same problem could be solved by other EOG
structures as well. For example, if the condition checking output were connected only to the
MUX operation, then the calculation would be also correct, but the two sections of operations
would not be alternative any more, which is not advantageous during the allocation procedure

13




(shown later). Obviously, it is always unavoidable to insert special operations with three inputs

into the EOG for the above simple formal handling of conditional branches.

a| X b oy ay . "
N
r condition 0 :
checking Q
10
N :
11, (23,..) 2,(14,..)
"
R=minR=12
y
Figure 11

Illustration of the synchronization problem

((1-a)*c)/d if x1=x2
= .
(1/b+c)/d if x1<>x2

v Figure 10
Symbolic representation of a conditional branch
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4. Synchronisation

The dataflow-like character of the EOG involves that an operation can be started by the arrival of
all of its input data. An other assumption for the operations is that they need all of their input data
to be unchanged during the whole duration. This condition is not met automatically even for an
initial EOG, and the modifying effects of the algorithm RESTART may also cause conflicts in this
sense. The problem is illustrated in Figure 11. For the inputs of e(3), the data arrival times are:
v(3,2)=2 and v(3,4)=11, where the number 4 refers to the buffer as e(4) inserted between e(1) and
e(3). If the pipeline restarting period R=minR=12, then the second data arrives at 23 and 14
respectively. It means that e(3) senses the next input change after v(3,4)=11 at 14. Therefore, the
input data of e(3) are unchanged between 11 and 14 only in the clock cycles 12, 13, i.e. for 2
clock cycles instead of the required ¢(3)=5. This synchronization problem may always arise, if an

operation has two or more inputs.

9/3
11, (23,...) 11, (23,...)
5,(17..)

Figure 13
A symbolic representation of inserting
buffers into the EOG in Figure 11

Figure 12
The general situation for the synchronization

In Figiure 12, let it be assumed that
b(i)=max(v(i,h),v(i,r),...) and b(i)=v(i,r)
In this case, b(i) or v(i,r) can be called the earliest possible starting time of e(i).
For each e(h)->e(i), a time difference z(i,h)=b(i)-v(i,h) can be introduced. The second change of
the output of e(h) occurs at v(i,h)+R-t(h). Therefore, the time interval, in which both input data
of e(i) are unchanged:
v(i,h)+R-t(h)-b(i) or substituting b(i)=z(i,h)+v(i,h):
R-z(i,h)-t(h)
Since the input data of e(i) must be stable simultaneously for at least t(i), the inequality
R-z(i,h)-t(h)>=t(i)

15




must hold for the proper operation. If it is not the case, then an extra delay effect p(i,h) is
required between e(h) and e(i). The minimal value of this delay is

minp(i,h)=z(i,h)+t(h)+t(i)-R. )
The maximal allowable value of the delay effect is maxp(i,h)=z(i,h), since a longer delay would
increase the latency. Thus, the allowable interval for the delay effect is:

z(i,h)+t(h)+t(i)-R<=p(i,h)<=z(i,h).
If e(i) is a copy of a multiplied operation then

minp(i,h)=z(i,h)+1+t(i)-c(i)*R,
since e(h) is always a buffer register with t(h)=1 and only each c(i)-th restarting period can cause
changes at the input of e(i).
Obviuosly, a negative or zero result for minp(i,h) means that no synchronization problem arises
on this input even without extra extra delay effects.
If the data path between e(h) and e(i) is inside a recursive loop and the other input of e(i) from
e(r) is outside the loop and b(i)=v(i,r), then let e(i) be called a loop-border operation. In this
case, the possible extra delay effect between e(h) and e(i) would increase the total duration of the
loop. To avoid this drawback, the delay effect must be transferred to the input of the loop. The
first operation of a recursive loop, i. e. the input of the loop is always free from synchronizing
problem, since the first feed-back input data of this operation is an undefined initial value and so
its arriving time can be considered as to be the same as the arriving time of the other input. Thus,
the second and the further data cannot cause any conflicts because the restarting period is always
longer than the duration of the loop.
If the extra synchronizing delay effects were realized as delay operations with durations
corresponding to the required values of the delay effects, then the restarting period calculated by
RESTART may be changed, since the new operations would produce new busy time sequences.
A possible way of avoiding this effect is to realize the extra delays by connecting after each other
as many buffer registers as the required value of the delay effect. Thus, the required number of
buffers is p(i,h). In this way, the new busy time sequences cannot influence the restarting period
calculated by the algorithm RESTART, since the duration of each new operation is 1. In this case,
t(h)=1 must be replaced in minp(i,h), because the immediate predecessor of e(i) is always at least
one buffer register, if the extra delay effect is required. Calculating minp(i,h) with this
assumption, a negative or zero result does not always mean now that the synchronization problem
would not occur without extra delay effect, since at least a single buffer register has to be inserted
as the immediate predecessor of e(i). Otherwise, t(h)=1 would not be allowed during the
calculation of minp(i,h) and the result with the original t(h) value may be positive indicating the
synchronisation problem. |
In Figure 11, the interval for p(3,2) is as follows:

maxp(3,2)=z(3,2)=9

minp(3,2=z(3,2)+1+t(3)-12=9+1+5-12=3
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9>=p(3,2)>=3
A symbolic representation of the upper and lower bounds of the delay effect required for the
synchronisation is shown in Figure 13. -
If e(i) is a loop-border operation, then a single buffer register inserted as the immediate
predecessor of e(i) would increase the loop duration by 1, but it would allow t(h)=1 for the
calculation of minp(i,h). Thus, the minimal required number of buffer register at the loop input is
minp(i,h)-1, the negative or zero value of which indicates that no buffer register is needed at the
loop input only the single one inside the loop. Generally, allowing a longer loop duration, a
considerable reduction may be obtained in minp(i,h) and so in the number of buffer registers at
the loop input. Obviously, this solution can be applied only then, when the longer loop duration
does not prevent achieving the desired restarting period for the whole EOG.
It is trivial that the inputs arriving from different conditional branches do not need any
synchronisation between each other, since they never can be active in the same restarting period.
(For example, the upper inputs of the MUX operation in Figure 10).
The algorithm SYNC based on the above considerations is summarized by the flow diagram in
Figure 14. Besides the calculation of the intervals for p(i,h), the buffer representation of the
required delay effects is also illustrated. The meaning of the ASAP and ALAP constraints will be
discussed later in the chapter outlining the scheduling procedures. The only situation which is not
illustrated by the flow diagram is shown in Figure 15, assuming that more than one operations
inside a common loop require synchronization. For example, it may happen that calculating
separately the delay effects p(i,h) and p(m,j), even the inequality minp(m,j)>z(i,h) would hold, if
the representing buffer registers were placed.before the loop. Thus, a new synchronization
situation occurs for e(i), if its input from e(h) is delayed to such an extent that its input from e(r)
requires synchronizing delay effects. Therefore, a repeated execution of the algorithm SYNC
cannot be avoided to overcome this difficulty. After the first run, the new arriving times are to be
calculated assuming the delay effect max(p(i,h),p(m,j)) obtained to the loop input by this first
run. Starting with these new arriving times, the second run of SYNC always yields a correct
synchronization.
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The flow diagram of the algorithm SYNC
(N is the number of the operations in EOG).
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Figure 15
Tlustration for the synchronisation problem
if more operation in a common loop need delay effects
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5. Examples for applying the algorithms RESTART and SYNC

Example 1
The digital convolution algorithm is to be realized for 3 stages:

y(i)= wl*x(i-2)+w2*x(i-1)+w3*x(i),
where y(i) denotes the actual output (result),

wl, w2, w3 are the constant weights,

x(i) denotes the actual input data,

x(i-1) and x(i-2) stand for the input data received one and two restart earlier,

respectively.
The first step is to specify the elementary operations to be applied. Since inputs from the earlier
restarts are to be preserved, a shift register of 2 bits are convenient to use for each data bit. The
serial inputs receive the new data bits and the old data bits are obtainable from the output of the
second register bit stage providing that a single shift step are executed by each restart. Applying
multipliers and adders as further elementary operations, the EOG is shown in Figure 16. The
duration times are assumed as follows:
e(1), e(2), e(3) are multipliers with t(1)=t(2)=t(3)=20,
e(4), e(5) are adders with t(4)=t(5)=10,
e(6), e(7) are shift registers with t(6)=t(7)=1.
Since w1, w2 and w3 are constants, each multiplier can be considered as having only one data
input.

min R=31
After applying
only SEFPTUN
L=a43

min R=22

Figure 16
The EOG for the digital convolution algorithm
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Following from the algorithm, the EOG can provide the first valid output only at the third start
(Restart2):
Start (Restart0): w3*x(1)+w2*?+wl1*?=?

Restartl: w3*x(2)+w2*x(1)+wl*?=?
Restart2: w3*x(3)+w2*x(2)+wl*x(1)=y(3)
Restart3: w3*x(4)+w2*x(3)+wl*x(2)=y(4)
etc.

Without any modifications, the EOG allows minR=31, after applying the algorithm SEPTUN,
minR=22 could be achieved. For the further reduction of the restarting period, the algorithm
RESTART must be applied.

Let the desired restarting period be R=5. The calculations according to RESTART are as follows:
Single buffer registers are to be inserted after each elementary operation except e(5) and multiple
copies are required for e(1), e(2), e(3), e(4), e(5). Each inserted buffer would be followed directly
only by a multiplied operation with unavoidable input buffers, therefore each inserted buffer can
be neglected in this case according to the algorithm RESTART. The output of each multiplied
operation is connected to the input buffers of an other multiplied operation, therefore t(h)=1 is to
be applied in each expression for the minimal number of copies:

c()=c(2)=c(3)=[(20+1+1)/5]=5
c(4)=[(10+1+1)/5]=3
c(5)=[(10+1+0)/5]=3

The modified EOG is illustrated in Figure 17. The synchronizing delay effects are to be caculated
only for e(4) and e(5):

z(4,1)=1
1>=p(4,1)>=1+1+10-3*5=-3
2(5,3)=10
10>=p(5,3)>=10+1+10-3*5=6

It is trivial that the negative result for minp(4,1) means that no synchronization problem can arise
even without any delay effects on this input. Therefore, a negative value for minp(i,h) is to be
considered as zero in this case, since e(4) is a multiple operation and so the necessary input
buffers represent t(h)=1 for each copy. Thus; the delay effects calculated for e(4) and e(5) can be
symbolized in Figure 17 preceding the input buffers of the copies.
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33 |/ | 23 L=44
‘ R=5

Y ¥

Figure 17
The mod1ﬁed EOG of Figure 16 after applying the algorithm RESTART for R=5

Example 2
The problem to be solved is to calculate the expression:
y(i+1)=y(i)+x1(i)*x2(i)+SQRT((x3(i)*x4(i)),
wheré y(i+1) is the actual output (result),
y(i) is the output obtained at the previous restart
x1(i), x2(i), x3(i), x4(i) are the actual input data.

Applying adders, multipliers and SQRT operations as elementary operations, a possible EOG is

shown in Figure 18. Let the duration times be assumed as follows:
e(1), e(2) are multipliers with t(1)=t(2)=20,

e(3) is the SQRT operation with t(3)=20,

e(4), e(5) are adders with t(4)=t(5)=10.
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x1(i) x2(i) x3(i) x4 (i)

vV oy(i+1)
- Figure 18
e The EOG for calculating the expression y(i+1)=y(i)+x1(i)*x2(i)+SQRT((x3(i)*x4(i))

The buffer register at the output of e(5) is unavoidable, since otherwise e(5) would form the loop
alone, which is not allowed in EOG.

Without any modifications, the EOG allows minR=41. Applying the algorithm RESTART only
minR=12 can be achieved because of the recursive loop. The symbolic representation is shown in
Figure 19. The calculations are as follows:

Single buffer registers are to be inserted after e(1), e(2), e(3), e(4) and multiple copies are needed
for e(1), e(2), e(3) to achieve minR=12.
c(1)=c(2)=c(3)=[(20+1+1)/12]=2

No inserted buffers can be neglected at the output of the multiplied operations. The modified
EOG is shown in Figure 20. The synchronizing delay effects are to be calculated only for e(4):
21>=p(1,4)>=21+10+1-12=20.
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x1(i) >x2(i) x3(i) x4 (i)

r(s)
11
l v(i+1)

Figure 19
Symbolic representation of the recursive loop in Figure 18

Px<1(@® | %<2 (i) | X3(i) x4 (i)

1 1 1

-

1 1 1 - 1

T (D) 2 (1)
20 2*0

t— ]

Figure 20
The modified EOG of Figure 19 after applying the algorithm RESTART for R=12
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An alternative inital EOG for the the problem to be solved is illustrated in Figure 21. In this case,
the duration of the recursive loop is 20, therefore no shorter restarting period would be possible
than minR=21. Obviously, this solution for the EOG is not advantegous. The general rule is that
the duration of recursive loops should be kept as short as possible.

x1 () x2(i) >x3(i) x4 (i)

Figure 21
An alternative EOG for the problem in Figure 18
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6. Scheduling as arrangement of synchronizing delay effects
The above buffer representation of the synchronizing delay effects can be used advantageously
during the scheduling procedures, because the buffers can be considered as delay units movable
separately along certain parts of the data path without affecting the pipeline restarting period,
latency or synchronization. In this way, all possible situations can be simulated for the starting
times of the operations, since the arrangement of the synchronizing buffers determines the starting
time of an operation inside its allowed mobility domain. The data dependency determined by the
EOQG, the restarting period and the latency are the constraints for the allowed mobility domain.
Two extreme cases can be defined as constraints for the mobility domain: each operation is
started as soon as possible (ASAP schedule) or each operation is started as late as possible
(ALAP schedule). For example, if all of the 9 synchronizing buffers are assumed between e(3) and
e(2) as shown in Figure 13, then this situation corresponds to the ASAP scheduling. Obviously,
the synchronizing effect would not be changed, if all of the 9 synchronizing buffer registers were
placed at the input of e(2). This arrangement would represent the ALAP schedule for the EOG in
Figure 11. Thus, the upper bound of p(3,2) can be used for calculating the maximal mobility of
e(2). Considering the minimal required value of the synchronizing delay effect calculated as
minp(3,2)=3, the corresponding 3 buffer registers would not represent the same delay effect at
the input of e(2) as they do between e(2) and e(3). The reason of this is that during the calculation
of minp(3,2), t(h)=1 has been assumed, which is not true any more if there is no buffer register
between e(2) and e(3). In this case, t(h)=2 has to be taken into consideration because of t(2)=2.
Thus, the new value for minp(i,h) transferred to the input of e(2) would be: 9+2+5-12=4. An
other possible arrangement could be obtained, if a single buffer register was left between e(2) and
e(3). In this case 2 buffer registers, i. e. altogether 3, would be enough at the input of e(2) for
representing minp(i,h), because t(h)=1 would be guaranteed by the single buffer register.

The algorithm SYNC provides always the ASAP schedule, if all the synchronizing delay effects
maxp(i,h) are placed between e(i) and e(h) or -in the case of recursive loops- at the loop input.
Starting from this schedule, the ALAP schedule can be obtained systematically by moving the
delay effects step by step from the output of each elementary operation to its inputs. This
procedure is to be started for the operations which produce the output data of the EOG and
continued successively upwards until the inputs of the EOG. During the relocation of the delay
effects, the latency of the EOG must not increase and the synchronization obtained as the ASAP
schedule must not be hurt. Two possible conflicts are shown in Figure 22.
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max p(i,h) | | max p(i,h)
@ max p(i,h) &

before relocation after relocation

| max p(i,h) | I max p(j,h) | | max p(i,h) - max pG, h)|

@ »  ©E

before relocation after relocation
Suppose: max p(j,h)<=max p(i,h)

Figure 22
Relocation of synchronizing delay effects in the case of operations
a.) with collector property, b.) with distributor property

If an elementary operation has more than one input (collector property), then the delay effets
originating from its output must be repeated at each input. Otherwise, the synchronization would
be hurt. If the output of an elementary operation is connected to the inputs of more than one other
operation (distributor property), then different synchronizing delay effects may occur along
each connection. In this case, only the smallest delay effect is allowed to be transferred to the
inputs of the operation with the distributor property and this smallest value must be subtracted
from each delay effect occurring along the other connections at the output. Based on these
considerations, the ALAP schedule of the EOG in Figure 17 is shown in Figure 23, where only
the values of maxp(i,h) are symbolized, since the delay effects according to minp(i,h) would not
mean the ALAP schedule.
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Figure 23
The ALAP schedule for the EOG in Figure 17

Note that the delay effect 1 at the input of e(1) must not be pushed further to the input x of the
EOG, because influencing e(6) is not allowed during the relocation of maxp(4,1)=1. In other
words, the branching point at an input of the EOG is always to be handled as an elementary
operation during the relocation procedure. Obviously, the delay effects at inputs wi are only
formal, since these inputs are supplied with constant values which can be assumed to be available
permanently. .
Having the ASAP and ALAP schedules, the mobiliy time domain mob(i) for an elementary
operation e(i) can be expressed as follows:

mob(i)=(al)b(i)-(as)b(i),
where (al)b(i) and (as)b(i) stand for the earliest possible starting time b(i) of e(i) according to the
ALAP and ASAP schedule respectively. '
To schedule an EOG means to assign a starting time for each e(i) inside its mobility time domain
mob(i), i. e. between its ASAP and ALAP constraints.
With the buffer register representation of the synchronizing delay effects, the scheduling
procedure can be formulated as to arrange the buffer registers of number maxp(i,h) inside the
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ASAP and ALAP constraints for each e(i) as it has already been indicated in Figure 14. Each
possible schedule could be obtained if starting with the ASAP schedule, the relocation procedure
towards the ALAP schedule were stopped at every possible intermediate step for each inividual
buffer register of maxp(i,h) provided by the algorithm SYNC. Even by relocating a single buffer
register from the output to the input of an e(i), a new schedule can be generated. Therefore, every
possible arrangement of the buffer registers representing the synchronizing delay effects
maxp(i,h) establishes a different schedule for the EOG.

The aim of the ‘scheduling in high-level synthesis is to ensure the best conditions possible for
covering the elementary operations by real resources called processing units or processors. This is
the allocation step of the synthesis and it is detailed in the next chapter. It is trivial, however,
already at this stage that the schedule of the EOG has a strong influence on the efficiency of the
allocation. For example, if the number and types of the processors are given in advance as
constraints, then the allocation means to cover the elementary operations by their proper disjoint
subsets, each of which is to be realized by a single processor. In this case, only such elementary
operations can be drawn together in common subsets which are never busy at the same time, since
otherwise timing conflicts would arise among the elementary operations sharing the same
processor. Obviously, the quality of the solution and even the solvability of this allocation problem
srongly depend on the schedule, since the concurrence of the elementary operations can be
modified choosing an other schedule. How to determine the most advantageous schedule for the
given allocation constraints, this is the problem to be solved by the scheduling methods. No
algorithms are existing for the optimal solution, since the problem is NP complete. However,
many practical approaches have been proposed in the literature for solving the scheduling
problem. The quality and performance of these methods can be judged only by comparing their
results obtained for characteristic benchmark examples. The basic concepts of these practical
approaches to the scheduling problem are detailed in a separate chapter after having been
introduced the most important constraints for the allocation in the next chapter.
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7. Allocation

The aim of the resource allocation algorithm is to decide which elementary operations are to be
realized by common real processors[5],[6]. It means that proper subsets of the elementary
operations are to be found under several constraints (cost, area, data path complexity, processor

type, etc.).

7.1. Covering of non concurrent operations

One of the possible strategies is based on the possibility that non concurrent operations may share
a common processor. It is trivial that the concurrence of the elementary operations is strongly
influenced by the length of the pipeline restarting period and the scheduling. The four possible
time overlapping (concurrence) situations between two operations are shown in Figure 24,
where s(i), s(j) and f(i), f(j) denote the staring and finishing points of time of e(i) and e(j),
respectively and b(j)>b(i) is assumed.
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The four possible situations for e(j) in overlapping with e(i)

Figure 24
Concurrence situations of operations

The finishing points of time can be expressed as: f(i)=s(i)+q(i) and f(j)=s(j)+q(j). In a pipeline

mode, the starting times of the operations e(i) and e(j) can be expressed as follows:
s()=b(i)+k(i)*R and s(j)=b(j)+k(G)*R,

where k(i) and k(j) are arbitrary non-negative integers representing the serial numbers of the

starts of e(i) and e(j), respectively. If e(i) and /or e(i) are multiplied and their numbers of copies

are ¢(i) and c(j), then the expressions for the starting times of their n(i)-th and n(j)-th copies can
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be considered as generic forms including also the above expressions for the case
c(i)=c(j)=n(i)=n(j)=1:
s(i,n(@)=b(D)+((n()-1+k@i)*c()*R and s(j,n({))=b()+((n()-1+k(j)*c(D)*R,
where 1<=n(i)<=c(i) and 1<=n(j)<=c(j).
Note that k(i) and k(j) represent also the serial number of the restarting period, but only if
c(i)=c(j)=1.
The four overlapping situations can be characterized by the following inequalities:
s()<=s(j)<=£(i)
s(i)<=s(i)<=1(j)
Introducing the above generic expressions for the starting times,
(b(i)-b(j))/R<=K<=(b(i)-b(j)+q()))/R
(b(i)-b(j))/R>=K>=(b(i)-b(j)-q(j))/R
can be obtained, where
- K=n(j)-n(i)+k(j)*c()-k(i)*c(i). (1)
The left sides of both ineqalities are identical, therefore they can be substituted by a single
inequality as the necessary and sufficient condition for the concurrence of e(i) and e(j):
(b()-b(j)-q(j))/R<=K<=(b(i)-b(j)+q(i))/R @)
The operations e(i) and e(j) are overlapping in time i.e. concurrent if and only if inequalitiy (2)
holds at least for one integer K satisfying equation (1). Based on this result, the necessary and
sufficient condition also for the non-concurrence of e(i) and e(j) can be expressed. Firstly, let
c()=c(j)=n(i)=n(j)=1 be assumed, i. e. neither e(i), nor e(j) are multiplied. In this case, any
integer K satisfying inequality (2) excludes the non-concurrece. The non-existence of such integer
K requires that the integer part of the left and the right side of inequality (2) must be equal:
(b(i)-b(§)-q(j))/R=INT+FR1
(b(i)-b(j)+q(i))/R=INT+FR2,
where INT and FR1, FR2 denote the integer and the fraction parts respectively.
The assumption b(j)>b(i) involves that the left side of inequality (2) and so, INT, FR1, FR2 are
all negative. Expressing INT from the above first equality:
INT=(b(i)-b(j)-q(j))/R-FR1
and substituting it in the second one:
FR2-FR1=(q(i)*+q(j))/R
can be obtained. Since FR2>FR1 and both are negative, FR2-FR1<1 holds. Thus,
(q(i)+q())/R<1
or  q()+q()<R | 3)
can be written, as a trivial necessary condition for the non-concurrence. It expresses that the sum
of the busy times of e(i) and e(i) must be shorter than the restarting period, otherwise, the
overlapping could not be avoided. An other necessary condition can be concluded from the
requirement that the right side of inequality (2) must be negative:
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(b(i)-b(j)+q(D))/R<0
or simplified:
 bG)bGEPa0), : @)
which is also trivial, since the time difference between the starting times of e(i) and e(j) must be
longer than the busy time of e(i), if b(j)>b(i). Otherwise, the non-concurrence would be hurt.
However, inequality (4) alone is only a necessary condition of the non-concurrence, since it holds
also for the case b(j)=b(i))+R, which involves the concurrence of e(i) and e(j) in the second
restarting period. Such situations can be excluded by considering that FR2 must not be zero for
the non-concurrence, 1. e. the right side of inequality (2) must not be equal to INT, otherwise INT
would be the integer solution for K. Obviously, FR1=0 cannot occur, because FR2>FR1 and
both are negative.
Thus
(b(i)-b(j)+q(D))/R<INT |
and introducing the expression for the common integer part of both sides of inequality (2):
(bG)-b(j)+a(@)/R<Int((b(i)}-b(j)-4()/R) ©)
If all of the inequalities (3), (4) and (5) hold, then they represent together the necessary and
sufficient condition for the non-concurrence in the case of c(i)=c(j)=1, because these conditions
are just sufficient for excluding the existence of an integer K solution in inequality (2).
If c¢(i) or c(j) or both of them differ from 1, i. e. e(i) or e(j) are multiplied, then inequality (2)
always has integer solutions for K, because the length IL of the interval for K is always greater or
equal to 1 in this case:
IL~(q()+q(j))/R>=1,
since q(i)/R>1 or q(j)/R>1 holds, if e(i) or e(j) is multiplied. Therefore, the non-concurrence
would require that no integer solution of K satisfies equation (1) for any non-negative integer
values of k(i) and k(j) as variables. It can be proven that such values of k(i) and k(j) can be found
for each integer solution of K. It means, that e(i) and e(j) are always concurrent if at least one of
them is multiplied. For the proof, let inequality (2) be rearranged as follows:
(b(i)-b(§)-a())/R-n(j)+n(i)+k(i)*c(i)<=k(j)*c(j)<=(b(i)-b(j)+q(i)/R-n(j)+n(i)+k(i)*c(i)
Choosing a positive integer k(i), which makes both sides positive and introducing the notation:
A=(b(i)-b())R-n()+nG)+kGi)*c(i),
inequality (2) can expressed as
A-q(j)/R<=k(j)*c(j)<=A+q(i)/R
Obviously, the length of the interval for k(j)*c(j) is the same as it has been for K before the
rearranging. If TL>=c(j) holds, then there exists at least one non-negative k(j) which satisfies the
above inequality, i. e. inequality (2). This condition can be rewritten as follows:
R*c(j)<=q(i}+q()
Let R*c(j) be substituted by its upper bound derived from the calculation rule of ¢(j) according to
the algorithm RESTART:
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(q(j)+1)/R+1>c(j) that is g(j)+1+R>R*c(j).
Since both sides are always integers,
q()+R>=R*c(j) ‘
can be written
Thus:
q(j)+R<=q(i)*+q(j) that is R<=q(i),
which always holds, if ¢(i)>1. At this stage, the proof'is completed, since no constraints have been
assumed for ¢(j) and non-negative integer values for k(i) and k(j) can always be found in the
above way.
Note that it was assumed for the proof that the minimal numbers of copies have been applied for
the restarting period. Therefore, the copies of multiplied operations are always concurrent, if the
minimal numbers of copies have been calculated by the algorithm RESTART. In this case, it is
obvious that the multiplied copies are always overlapping each other in time and their new restarts
occur just after the end of their busy state at most one clock period later. This free time is not
enough for the non-concurrence with any kind of elementary operations, since even the shortest
busy time is 2 clock cycles.
Conditional branches in EOG need special considerations during the concurrence checking. If e(i)
and e(j) are in separate branches of the same conditional checking, then they are never executed in
the same restarting period, i. e. k(i)=k(j) never holds for the case c(i)=c(j)=n(i)=n(j)=1.
Therefore, the solution K=0 does not exclude the nonu-concurrence, since equation (1) can be
rewritten, as 0=Kk(j)-k(i), which would hold only for k(i)=k(j) and it is impossible now.
Obviously, any nonzero integer solutions for K exclude the non-concurrence. It means that the
non-concurrence can hold only if the left side of the inequality (2) is greater than -1 and the right
side of it is smaller than +1:
(b(i)-b(§)-q(j))/R>-1 and (b(i)-b(j)+q(i))/R<+1, or rewritten:
b()+q()<b(i)+R ©)
b(i)+q(i)<b(j)+R (7
Both above inequalities express the necessary non-concurrence conditions that the busy time of
one of the operations must be finished earlier than the execution of the other one begins in the
next restarting period. These conditions involve the most pessimistic assumption that the
conditional branches may alternate with the restarting periods. If ¢(i)=c(j)=n(i)=n(j)=1 and both
of the inequalities (6) and (7) hold, then they represent the necessary and sufficient condition for
non-concurrence in the case of operations in separate branches of the same conditional checking,
because these conditions are just sufficient for excluding any nonzero integer K from the solutions
of inequality (2). If either e(i) or e(j) is multiblied, then the non-concurrence is not excluded only
if K=0 is the only integer solution of inequality (2) also in this case. By adding both sides of
inequalities (6) and (7),
q(i)/R+q(j)/R<2
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can be obtained, which can hold if only one of q(i)/R and q(j)/R is greater than 1. It means that at
most one of ¢(i) and ¢(j) can be 2 and the other must be 1, i. e. ¢(i)+c(j)<=3, provided that c(i)
and c(j) are determined by the algorithm RESTART. In consequence, the non-concurrence of
milltiple operations being in separate branches of the same conditional checking is possible only in
the cases c(i)=2, ¢(j)=1 or c(i)=1, c(j)=2. This result can easily be explained as follows. If a
multiple operation has only two copies, then the busy times of each copies last not longer than the
end of every second restarting period. Otherwise, the algorithm RESTART would not calculate 2
copies. Thus, the time left after end of the busy time until the beginning of the next restart may be
enough for matching the busy time of a non-multiple operation from an alternative conditional
branch, provided that inequalities (6) and (7) hold. Since the most frequent turn of a conditional
branch is every second restarting period, this situation is sufficient for the non-concurrence.
Obviously, more copies would not allow the non-concurrence, because their busy times would
cover at least two restarting period and the pessimistic alternating turn of the conditional branches
would exclude the non-concurrence.

Based on the above considerations, the algorithm of the concurrence checking (CONCHECK) is
summarized by the flow chart in Figure 25.

Obviously, multiple copies of the same elementary operation cannot be covered by a common
processor based on the non-concurrence property. If, however, the processor library to be used
contains so called structurally pipelined processors, then this type of processors can cover
several copies of a multiplied elementary operation. Namely, structural pipelining means that the
processor is able to accept new data before completing the previous one. This is just the case, if
an elementary operation is multiplied and considered as a processor. Thus, multiplying the
elementary operations is equivalent to forming structurally pipelined processors. Therefore, using
this type of processors, the result obtained by the algorithm CONCHECK may be improved, since
the copies of the same multiplied elementary operations can be additionally covered by common
structurally pipelined processors. .

It can be proven [8] that the concurrence is a compatibility relation between two operations.
Based on the above conditions, the compatibility checking can be executed for each pair of
operations. The maximal compatibility or incompatibility classes can be obtained by the well-
known algorithms [9]. For finding the proper subsets of operations to be realized by common
processors, a proper cover must be constructed with respect to the actual constraints for the
processors.
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The flow diagram of the algorithm CONCHECK

if b()>b(i) is assumed

7.2. Topological cover of operations

Another strategy of allocation could be the splitting of the EOG into parts containing data-
connected operations. These parts specify the processors to be realized. The constraints for
forming the processors may be the number and complexity of the operations to be combined in
common processors or the simplicity of the data connections between the processors and in many
cases the regularity of the structure. As an example for the regurality, let the EOG of the digital
convolution algorithm in Figure 16 be considered. In Figure 26, this EOG is completed with the
dotted adder and shift register. The synchronizing delay effects are to be calculated for e(4) and
e(5) only. If the minp(i,h) values are applied, then no extra buffers are required, since

minp(4,2)=minp(5,3)=9+10+10-31=-2.
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Figure 26
Completion and splitting of the EOG in Figure 16

It can be seen that the completions do not affect the restarting period, but makes the EOG look
symmetrical. Therefore, the separation of identical EOG parts becomes possible as indicated by
the lines crossing the EOG. Each part may form an identical processor as shown in Figure 27 with
the input-output specification as follows:

y(out)=y(in)+wi*x(in)

x(out)=x(in-1),
where x(in-1) denotes the input data occured one restart earlier, than the actual one.
The regular structure consisting of such processors is illustrated in Figure 28 which is similar to
one of the systolic realisations of the digital convolution algorithm.[10]
Finding or establishing the symmetry of an EOG cannot be executed systematically without
intuition and trials. This task may become more difficult after the algorithms RESTART and
scheduling, since the arrangements of extra delay effects and multiple copies of operations may
eliminate even the inherent symmetry of the initial EOG. For example, the EOG in Figure 17
would be more difficult for establishing identical parts by completion outlined above and a
completion usually needs a reschedule.
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The internal structure of a processor obtained in Figure 26
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Systolic realisation of the digital convolution algorithm

Figure 28
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8. Multiple-process recursive loops

Recursive loops are usually considered to be unavailable to overlapped execution during the
scheduling phase of high-level synthesis. This is caused by the special nature of recursive
execution: an iterative algorithm may not be fed the next data before the final result of the
previous iteration is ready. As calculation of the next value requires a minimum of T(i) cycles
(T(i) is loop duration of loop i (defined as the sum of execution times for the operations in the
loop), a restart period under )

min R=max(T(i)+1, i: every loop)

time cycles is impossible in a data path containing recursive loops as subsequent data would enter
slower loops before their iteration would end. (Outside recursive loops it is useful to measure
time in iterations, with one iteration being equal to the amount of time cycles it takes for the data
to finish one completé turnaround in the recursion.)

There are some notable exceptions, however, to the general case. In a special type of problems,
recursive solutions are needed to calculate values of identical functions for different processes.
In this case, as the operations inside the loop (core of the loop, from now on referred to as the
loop) may hold more than one data simultaneously as long as there is no collision between them.
In this way, the loop may process data with a higher throughput than the loop iteration would
permit. |

Such an example is the centralised control of robots using the computed torque technique.
Realisations of the computed torque technique require periodic calculations of a dynamic model
for the robot joints to deal with changes in the environment. For the scheduling phase, this
calculation may be run simultaneously with torque calculations, in a conditional execution branch
with a probability of 1/N if a calculation is required every Nth iteration.

As conditional execution would be a special problem in scheduling, the conditional branches are
treated as ordinary (non-conditional) branches in the graph.

Most of the published methods handle the recursive loop latencies (T+1) as the minimal value of
the restarting time (R). This constraint causes design methods to minimise the total execution time
in loops. The block approach treats recursive sections as parts of the data graph that are
elementary operations and so unavailable for optimisation.

8.1. Overlapped (pipelined) utilisation of recursive loops

Decomposing a loop sequence to real elementary operations makes it ‘possible to tune the
behaviour of the loop itself.

In the execution of a recursive loop, some pérts of the loop are busy while the others are idle. As
execution of such a loop is strictly sequential, the busy state "propagates" along the data path in
time (Fig. 29.).
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Figure 29.
Idle and utilized times in an overlapped (pipelined) recursive data path

As time limits permit, it is possible to introduce new data (belonging to another process) to the
start of the loop that runs through the loop without data conflict with the previous data. This
overlapped execution exploits the inherent idle states of the loop. With such a structure, more
than one process may use the loop, if a strict schedule of data introduction is maintained. Such a
loop is referred to as a multiple-process (recursive) loop. Processes forward data to the loop
once in every T(i)+1 cycles (and they fetch data at the same rate) while the loop itself serves more
processes and so takes and outputs data at a higher frequency.

As in recursive overlapping (pipeline) mode data is put in the system in a mixed order to the loop,
a few definitions are needed. A complete iteration is equal to the time a process uses the loop,
i.e. between the cycle of sending data to the loop for the first time and receiving data from the
loop for the last time. An iteration is the time of one turnaround of the loop, i.e. time of all loop
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elementary operations and the delay in the feedback; the number of iterations in a complete
iteration is referred to as loop depth or iteration depth, g(i).

A data packet or packet is data belonging to a process; a packet consists of a single set of input
values that starts the iteration (inmitial data) and the intermediate values that are present in the
system before the iteration is finished (iteration data). During iterative execution the process
needs to supply the initial value of the iteration and the recursion is finished when exit criteria are
met. During iteration the process need not supply more data since the next initial value arrives
from the previous iteration through the feedback branch.

As an example in the case of iterative solutions of non-linear equations, the f(x) value is checked
if it is in the neighbourhood of zero or not. In a well-known solution method (tangent method) a
non-zero f(x) moves the x (initial) value to another x' where f(x') is hopefully smaller in absolute
value than f(x) so the iteration improves the quality of the x value. The new x' is found as the
intersection of the x axis and the tangent of f(x) in (x, f(x)). This algorithm may result in an
oscillation deadlock between two suitable points (see Fig. 30.). It is clear, however, that the
process needs to supply only one value (the initial value x), as all the following x values are the
feedback of the previous x' value.

e (x(2), y(2))
(XD, y(1)

f(x)

x(1)-y(1)/f(x(1))=x(2)
x(2)-y(2)If(x(2))=x(1)

Figure 30.

Oscillating states in an iterative solution of an equation

Another type of recursion is where both the feedback and the process supply data. Such a case is
a circuit that realises exponential averaging on a given input sequence. This may be described with
an equation '
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y(i) =y(@-1) + a * (x(i) - y(i-1) ).

It is obvious that this structure depends on both the previous output (y(i-1)) and the current input

(x(i)). )

A multiple-process loop must be properly synchronized so that

1) data exiting the loop and returning to the loop input must meet the next corresponding
input data and

2)  no data overrun occurs inside the loop i.e. the structure of the loop must be available for the
desired restart period. .

By using multiple-process recursive loops, we make possible for separate processes to share the

same resources in such a way that the recursive section of processes is realised only once. Every

loop features a receptor element as its first operation, which handles feedback from the previous

iteration and receives new data from the process.

To tune the loop and to guarantee proper execution the previous and the new data of the same

process (the first fed back from the loop output, the second arriving to the loop receptor from the
outside of the loop) must arrive in the same time to the receptor element. This means a
synchronisation problem in the transfer sequences connected to the loop (external
synchronisation) and an additional synchronisation inside the loop (loop scheduling). Since the
external synchronisation is loop dependent, this problem will be discussed after the classification
of the recursive problems. As the basic synchronisation tool is the delay (buffer), a recursive
structure optimised for pipelined execution is likely to execute slower than the non-pipelined loop.

This speed loss may be small, especially if loop execution time much greater than 1, as the buffers
cause a latency increase of 1 each.

8.2. Loop scheduling

It is obvious to discuss the scheduling problem for the easiest case, when the whole elementary
operation graph consists of one loop, therefore external synchronisation is eliminated. In this
structure T=T(1). It will be assumed that the graph contains only one receptor element at the
beginning of the recursion. The decision whether the data must stay in the loop for another
iteration or the recursion has finished will also be made by this receptor element (so the loop shall

behave like a "test-before" construction, like a WHILE instruction in high-level languages).

1 To be able to schedule other types of loops, they must be transformed to "test-before"
constructions. A REPEAT-UNTIL loop in Pascal may be transformed to a WHILE in general like
from

Repeat
Loop Instructions;
Until (Condition);
we get
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Loop Instructions;

While (Condition) Do Begin-®
Loop Instructions;

End;

Another possible solution is the manipulation of the loop condition:

var LoopCondition;
LoopCondition:=TRUE;

While (LoopCondition OR Condition) Do Begin
Loop Instructions;
LoopCondition:=FALSE;
End;
which solution guarantees that the loop always runs for its first iteration, yet it is a test-before
loop. The second solution is preferred as it does not duplicate operations in the graph.

The same is usually possible with FOR type loops of C and Pascal. The loop execution condition

should be connected to operations in the loop, otherwise the loop is infinite or never executes,

which are not practical recursive cases.

The loop is considered to be able to handle the data of N processes simultaneously. This means

that the N+1. data arriving to the first receptor will be the next fresh data of the first process. To

avoid a data synchronisation problem between the feedback of the loop output (initial value of the .

next iteration) and the new data, the loop duration (T) should be an integer multiple of the restart

time (R):

T=(N+1)*R

As T is a function of R and N values that are given (set by the problem and/or hardware limits),

the equation will hold just for special cases; otherwise we have to solve the synchronisation |

problem inside the loop. To solve this problem the difference between T and R must be realised as

additional delay inside the loop. In this way the expression will be modified:

T=T+p=N+1)*R

where p is the number of the inserted buffers (delay elements). The number of inserted buffers is

determined by 2 factors:

p=p(s) + p() |

. Scheduling the loop for the aimed restarting time (calculation of p(s)): for this problem
any suitable scheduling method may be used to tune the opened loop. p(s) is the sum of
the number of the buffers inserted to the places where the transfer scores make it
necessary and the buffers are inserted before the multiplied elements.

42




. Synchronisation between input and feedback of the loop (calculation of p(f)): p(f) may be
expressed as
p)=N+1)*R-T-p(s) )
where T+ p(s) S (N+1) * R,
In a system where
T+ p(s) > (N+1) *R
the feedback of the system will be slower than the system input (i.e. the external data source) and
this must be taken into consideration when designing the external synchronisation. In this case the
feedback must not be further delayed 50 p(H)=0 is used.

8.3. Classification of recursive problems

Data propagation properties may be classified as one of three main classes based on the number of
iterations. The number of iterations a packet spends in a recursive loop (loop depth, g(i)) is either
a finite (constant or variable) or an infinite value.

1) Finite loop depth, variable number of iterations

Some problems iterate for a variable number of times before their data exits the loop. These
applications should finish within a finite number of iterations, otherwise they are unavailable for
real-time usage. To prevent this infinite iteration, the system should be equipped with a watchdog
mechanism that finishes the iteration after a pre-set turn-around time, regardless of system state.
(Infinite number of iterations is usually a fatal system error, for example a non-linear system
approximation stuck in an oscillating set of states.)

Iterative solutions of differential equations are remaining in an iterative state for a finite number of
loop transitions, while the exact loop depth is data dependent; this kind of problems is a typical
example of variable-depth calculations. For these calculations no exact time requirement rule may
be given as the time needed to finish processing a packet is unknown at design time. The time
needed for the first packet to leave and a new initial data to be introduced to the iteration is
min(R * (g(k) * (N+1) + k-1), k:every process)

as packet k enters the loop in time cycle R*(k-1) and it must run through g(k) iterations, each
using R*(N=+1) cycles. A similar expression tells the termination of the last iteration:

max(R * (g(k) * (N+1)+k-1), k:every process) |

for similar reasons.

2) Finite loop depth, constant number of iterations

The method to treat special recursive loops may be applied to some applications that are not
strictly recursive. Such loops include the FOR-NEXT (ENDFOR) loops of high-level
programming languages. For our considerations these loop types are treated as special recursive
tasks, like a feedback system where the feedback branch is not really important in the structure.
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The set of problems with a fixed, finite number of iterations is typical for the equivalent of FOR
loops (which generally run for a constant number of t'imes). In the case of a fixed-order FIR filter
the number of iterations is related to the order of the filter, which is a constant based on the
nature of the problem.

To model this set of problems, we assume that the hardware has to put x initial data through the
recursive calculations. Every packet of these data stays in the loop for g(0) iterations. Non-
overlapping execution would finish with these data in g*T*x cycles as x packets must terminate
all their iterations (g), each of those lasts g*T time cycles. The loop is tuned for N-times
overlapping, and T=(N+1)*R. #

As x 1s a large number, we may suppose that it is an integer multiple of N. (Otherwise the data
sequences may be padded with extra data to the nearest integer multiple of N).

The total time of overlapping (pipelined) calculations can be expressed as
(x/N)*g*(N+1) * R+ N *R.

The result may be explained as follows: N data packets can be processed using a recursive loop
shared by N processes. Such a loop requires

g*(N+1)*R

time cycles for the first result to leave the loop; this is the first time cycle in which the loop is
available for new data. The next N-1 results are put out of the loop after that time cycle with a
period time of R, so subsequent packets may be fed to the loop with the same rate.

The system must process x/N-1 complete data N-tuples before the last packet. The last packet
features N-1 packets before itself so the total execution time is the sum of the execution times for
the N-tuples plus the time difference between the first and last initial data in the last data N-tuple
(equal to N*R time cycles),

(x/N)*g*(N+1) * R+ N * R,

This total execution time is less than

g*T*x

~ (time required without loop overlapping). From the expressions we may decide whether it is
worth'to apply this method or not. If the ratio of the execution times is less than 1, than the new
design solves the problem faster. To check this, the following feasibility inequality must be
@N)*g*(N+1) * R+ N*R<<g*T*x

As x is usually greater than 1 (the system is designed to process a large number of packets), for
the left side of the above inequality

x/N)*g*(N+1) * R>>N*R

holds. As this is true, neglecting N*R from the left side of the feasibility inequality yields

R/ T <<N/(N+1). '

This inequality shows that the more the restarting period is decreased against the loop duration,
the more efficient structure will be achieved and from the left side it can be seen that as more and

more data is introduced to the structure, the result can be more and more efficient.
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3) Infinite loop depth

Infinite loop depth is presented in the case of continuous calculations. Robots, for example, need
to calibrate the dynamic model of their environment periodically, as long as the robot is moving.
In this case the overlapped loop execution is usually slower than the non-pipelined version as
modifying the loop for overlapping increases T (as it inserts buffers to the data path). Note that
the loop itself becomes slower during scheduling, but this leads to an increase in speed as it may
process more than one packet of data'simultaneously.

One of the advantages is the reduced cost of hardware components, which is generally possible as
the nature of calculations is identical for every process. Absolute time gain is therefore expressed
in the terms of realisation costs, with a typical 3-process robot subsystem presenting only one
fully utilised loop instead of three, partially idle systems.

8.4. External synchronisation

External synchronisation will be illustrated on an example (Fig. 31.) which is used for data
filtering in voice-transfer processes. The graph checks for the predictability (and the
compressibility) of voice transfer, which may be used in monitoring digital compressed audio
transmissions and for regulating sampling time.

TOLD 6.1 Execution times
/ 7
* 6
SQR 4
+ 3
- 3
12 2
CcCmMP 1

Figure 31.

Data path of a system that monitors compressed voice transmission

45




The system is a model of the following:

1) Branch 7-8-9-10-11-12-13 is responsible -for the adaptive tuning of the sampling time. This
choice is based on the difference in signal energy:

Operation 7 (SQR) produces the square of the signal value x(k), while operation 8 takes another
signal value and squares it. The difference of these signals is compared to two values: to a
maximum in operation 10 and a minimum in operation 11. Should the difference exceed a given
value, operation 10 outputs a negative value as AT; operation 11 outputs a positive AT value if
the difference is close to zero. These to factors are added to find the final change in sampling time
in operation 12 (the method increases sampling time for a signal that does not change in a long
time and conversely increases sampling frequency if a signal contains high-frequency
components). The output of operation 12 is added to the previous sampling time in operation 13
to update the value.

2) Branch 1-2-3-4-5 is the approximation of the signal based on its previous behaviour. This is a
model which approximates the current value as if it would follow the average of previous samples.
(It follows sigrial behaviour based on a digital low-pass filter, comparing the result to the actual
observations (branch 14-15)).

3) Branch 14-15 measures the real signal. Its output is the slope of the signal, which is compared
to the slope of the approximation in operation 6.

This recursive algorithm contains all the possible data conflicts can arise. The synchronisation
problems are negotiated here in the time order which eliminates any iterative steps during the
scheduling process. In this example two different, but not independent loop exist (the first follows
the 1, 2, 3, 4, 5, and the second, the critical path follows the 1, 2, 8, 9, 10, 12, 13, 5 sequence). In
the first step the shorter loop must be tuned to the critical recursive path, inserting extra buffers to
the shorter path. In this example it means that 7 buffers must be placed before operation number
5, to the 5.2 part.

The synchronisation problem can be simply solved by several algorithms before elements 2, 3, 9,
10, 11, 12 and 15, handling the whole graph without feed-backs. The value of the T must be
calculated after this step as the synchronisation may introduce delay elements to the critical
recursive path, which increases T.

Another class of the synchronisation problems is when the receptor element uses the result of the
loop (receptor 6 in Fig. 31.). In this case the algorithm is loop-dependent, because the result of
the loop is available in different time cycles depending on the type of the loop (see in section
"Classification of recursive problems"). ‘

This problem can be eliminated by inserting a shift register which can produce any of the stored
data in any time step depending on the control of the system. The length of the shift register is
determined by the worst case (the longest possible loop execution time). For the problems of the
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first class (see in section "Classification of recursive problems") it modifies the structure of the
o control logic. In this case the control logic picks up the suitable data from the shift register when

the recursive loop finished an iteration.




9. Control principles

The scheduled and allocated EOG represents the structural design of the data path only. A proper
control is required additonally to co-ordinaté the elementary operations according to the EOG.
This control has to ensure the correct data dependence and timing not only between the
processors, but also inside the processors between the elemetary operations covered by common
processor. Data multiplexing and demultiplexing are also to be controlled for establishing the
required data connections between the processors covering more than one elementary operations.
It is also a control task to synchronize the starting points of time and to distribute the input data
for the copies of multiplied operations. The control models are classified basically as centralized
and distributed control path.

9.1. Centralized control path
Let the EOG in Figure 32 be considered as an example. Without detailing the sheduling and
allocation steps (the duration times are not shown), let the processors P1...P6 be assumed as a

result for the cover of the elementary operations as follows:

Pl:e(1),e(5),e(10) P2:e(2),e(7) P3:¢(9),e(3) P4:e(4) PS:e(6) P6:e(8)
x1 x2 x3 x4 x5 x6

P1: e(1), e(5), e(10)
P2: ¢(2), e(7)

P3: ¢(9), (3)

P4: e(4)

P5: e(6)

P6: ¢(8)

Figure 32

Example for covering the EOG by processors
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In Figure 33, the internal structures of processors are illustrated only symbolically. The
elementary operations covered by a common processor are dotted, because they generally cannot
be separated any more in practical realisations of the processor shared by them. Only due to this
symbolic separation is it allowable to neglect the data multiplexing and demultiplexing inside the
processors. Obviously, the buffer registers and the delay effects generated by the algorithm
RESTART and SYNC need also proper control signals in order to satisfy their timing constraints.
The centralized control path is basically a counter driven by the system clock. The actual
content of the counter determines the elementary operations and buffers to be started by
producing the proper start signals (stl...st18). These output signals of the control path must be
generated in 1-from-n (one-hot) code by a modulo L counter. In non pipelined mode, each EOG
component has a single start signal, since it is started at most once during the time corresponding
to L, since each e(i) receives a starting pulse (st..) in the b(i)-th clock cycle. In a pipeline mode,
however, an elementary operation is started more times during L. depending on the value of L/R.
In this case, each e(i) is affected by more start signals which can be considered as to be connected
in logic OR. (No such case is illustrated in Figure 33). The pipeline starting of each e(i) occurs in
every b(i)+k*R-th clock cycle, where k is an arbitrary integer.

Note that the serial numbering of the start outputs in Figure 33 does not always reflect the order
of magnitude of the counter content. For example:

(st11)<(st10),
where the brackets stand for counter content generating the given start signal. It is trivial that e(9)

must be started by st10 later than e(3) by st11 according to the data dependence prescribed by the
EOG.

As it has already ben shown in Chapter 3.2, multiplied elementary operations need special control
considerations. In Figure 34, the internal control path is based on a modulo 2*¢(i) counter and
the stil..sti2*c(i) outputs must be generated in 1-from n (one-hot) code also in this case. The
input ‘sti receives a pulse from the main control path each time, when the start of the multiplied
e(i) 1s required. Therefore, each sti pulse must generate exactly two subsequent start pulses at the
outputs stl...st2*c(i), the first one for the input buffer and the second one for the copy being just
in turn. This is the task of the of the count control unit in Figure 34.
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Centralized Control Structure for the EOG in Figure 31
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Control structure for multiplied operations

The main advantage of the centralized control structure is the simplicity of the implementation. In
most cases the realisation is a Johnson counter. Outputs of this counter may be directly
connected to the corresponding start signals. Since this kind of control path is relatively simple
and the model matches with the internal structure of most of the processors, the extra silicon area
occupation is small compared to data path operations. The centralized control has a disadvantage.
If the EOG contains a large number of operations, then the generated VLSI die will be huge and
the interconnection delays of the controlling signals cannot be neglected. This delay decreases the
highest operation frequency. It is especially true if the target technology is Multi Chip Module and
the design does not fit onto one die, since the I/O pads cause additional delay between the
functional elements. To avoid this problem, the distributed control structure should be used.

9.2. Distributed control path
The centralized control path can be eliminated by distributing the control task among the
elementary operations. The dataflow-like character of the EOG and the constraints for the
opreations (see Chapter 2) require that the start signal (sti) of an e(i) must be generated only then,
when every e(j), for which e(j)->e(i), has already finished the operation. Thus, each elementary
operation must take part in generating the start signal of its next neighbourghs determined by the
data connections (edges) in the EOG. For this aim, the busy time intervals of the operations (see
Chapter7) can be represented by signals on extra 1-bit connection lines chained through the EOG
and accompanying each data connection. Such an extra edge as busy line can specify the busy
state of e(i) by the Boolean signal value B(i), as follows:

B(i)=1 if and only if e(i) is busy, i. e. b(i)<=t<=f(i), where t is the time parameter,
else B(i)=0.
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Completion of the EOG with distributed control cells

To evaluate the busy signals from the direct predecessors and to generate its own start and busy
signal, these are extra tasks for e(i) in the case of distributed control. Therefore, each e(i)
supposed to be provided with an extra distributed control cell DCC as shown in Figure 35. The
required function of a DCC(i) is to generate the start pulse sti in the same timing as the
centralized control path does it. It means that the system clock must be taken into consideration
as time base, consequently, DCC(i) can be specified as a synchnronous sequential machine. The
specifications of all DCC-s are identical except the duration of Bout=1 which is determined by
the duration (execution) time of the operation. With the input-output notations in Figure 36, the
task of a DCC can be formulated as follows:
The cell waites for the falling edges on Bin1 and Bin2. After having received both of
them, the later one enables the next single clock pulse to the st output as sti. The falling
edge of this single clock pulse activates Bout=1 as B(i) which lasts until t(i) clock cycles.
Only these output changes can occur, but only then, when new falling edges arrive on
Binl and Bin2.
Such a simple sequential machine is to be réalized to each elementary operation for performing
the distributed control yielding a mixed data and control path.
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Specification of the distributed control cell DCC(i) as a synchronous sequential machine

After the allocation step, the processors may represent many elementary operations also with the
corresponding DCC-s. Obviously, the DCC-s inside the same processor can be realized only by a
single sequential machine, but the multiplexing and demultiplexing of its inputs and outputs, and
the different Bout=1 durations must be ensured.

If e(i) receives the input data of the system, then the inputs Binl and Bin2 of DCC(i) are to be
connected to the output Bout of the DCC belonging to one the elementary operations which
produces the result data at the end of the longest transfer sequence. In this way., e(i) can receive
new input data only after a time corresponding to the latency, i. e. it is a non pipeline mode. In a
pipeline mode, the inputs Binl and Bin2 of DCC(i) must be generated from outside as often as
e(i) is to be restarted with new system input data.

The above DCC principle could be applied for realizing the distributed internal control of
multiplied operations, but in practical cases, no simpler sulutions can be obtained, then the
counter-based control path in Figure 34, since the practical values of ¢(i) need a relatively short
counter.
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10. Scheduling methods

During the course of high-level synthesis the step directly following precise task description is
the phase of scheduling and allocation. This phase requires an exact description of the problem
using the data path, a graph representation of data dependencies and propagation in the
system. In this graph nodes are elementary operations, with the directed branches between
them indicating immediate data dependencies.

Some of the elementary operations are reading system data entry ports while others output
data directly to system outputs. The delay between reading the first system input and writing
the last system output port is system latency (L). Latency is equal to the execution time of the
longest sequence of branches present in the data path. It is usually expressed as an integer
value, the time divided by the time unit (a cycle). The minimum of latency in a given system
may be found by examining the graph. Note, however, that actual latency may be extended
with no limit by inserting delay to the data path.

The hardware unit is considered to operating by introducing data periodically so that new data
values are written to system input ports every R cycles, where R is restart time, expressed in
the same units (cycles) as latency. A restart time exceeding system latency means a low
utilisation for the system as there are idle cycles when the elements are not working at all. In a
non-overlapping mode of execution restart time is equal to system latency, data is fed to the
system when the previous set of output values has been calculated. With the exception of
simple systems a non-overlapping execution mode works with data propagating sequentially
through the data path, leaving elementary operations in an idle state until the arrival of the next
data packet. The ratio of these inherent idle cycles may be decreased using the pipelined
execution method.

The overlapped (pipeline) method of feeding data to a system is the case where restart time is
less than latency. It is possible to use pipelined execution in systems where the idle state of
processors propagates so that data belonging to the next data packet does not disrupt previous
output values before they are read from the output of the operation. The lowest "safe" restart
time may be found using the execution time of the neighbouring operations. As the pipelined

execution mode results in an increased utilisation, data throughput is increased in such systems.

Structural and functional pipeline are two expressions often encountered in scheduling, even
if their meaning is not always made clear. Functional pipeline refers to the system operating in
the previous way i.e. the data graph itself is used in a pipelined way, with the data operations
themselves executing without internal overlapping. In this method the graph itself serves as
source of the overlapping.

Structural pipeline presents another method to speed up execution. In this description
elementary operations may feature internal overlapping, so that they are composed of multiple
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stages. An operation becomes available to receive data as it empties its first stage, so the
apparent execution time is less than the actual time needed to complete the calculations. As
this method uses operations that are complicated (i.e. they may not be called elementary),
structural pipeline is outside the scope of scheduling.

Note that operation multiplication works like structural pipeline, but it no longer refers to the
complicated processors as elementary. Superscalar design is frequently used to denote a
processor that is internally multiplied, usually like "n-way superscalar” for a processor that has

n parallel branches.

The Intel Pentium processor may be a typical operation (processor) in a complex data path as
its internal two-way superscalar structure is almost equivalent to a multiplied operation with
c=2. (This is only an approximation as the two execution paths in the Pentium chip (the U and
V pipes) are not completely identical. The difference is based on some of the complex
instructions that have to be performed by the U pipe.) From the user's point of view this
internal structure is visible as a CPU that has approximately twice the data throughput of a

similar 486 system, as the U and V pipes are similar to 486 systems in processing power.

10.1. Stages of scheduling and allocation

A system graph before scheduling is a functional description of the system where no properties
of the elementary operations are prescribed. The scheduling problem may be described as
finding the timing of elementary operations in such a way that the graph is suitable for a
feasible hardware realisation. The stage following scheduling is allocation, where the scheduled |
graph is tested for feasibility. A graph is feasible if it may be built under without violating one
or more constraints set by the operating environment or manufacturing process. As scheduling
is using information based on some the knowledge of the allocation method, some allocation
steps may be performed before scheduling (initial allocation). Outer constraints of the system
are to be taken into account during this stage.

The usual types of constraints are latency, restart time and hardware. Latency must be kept
under a feasible limit in systems where delay between writing system iﬁputs and reading system
outputs must be limited. Digital controllers used in process control are typical applications
where latency is a lower limit for controller dead-time, an unpleasant property of digital
controllers. As an increased value of latency presents additional problems to the design of
process control, it must not be increased over a feasible value. It is possible, however, to
design for a given latency value and find that the optimal solution does not use all the available
latency. (Fig. 37.) |
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Visual representation of a scheduling plan

Restart time is critical in applications where data must be fed to the system with a given
frequency. Data acquisition units are classified using frequency, not latency. In these systems
reduction of restart time to a lower value is a gain worth the increase in latency, staying under
a feasible value. Decreasing restart time usually increases latency, as it involves inserting delay
to the data path (unless the system was capable of running with the desired restart time).

Hardware limits are encountered in the design of systems where the realised hardware is
bounded in some way, be it power dissipation, silicon area or cost. Applications used in
extreme environments belong to this category. A data acquisition unit mounted on an
information-gathering satellite is a typical member of this class, as satellites are usually
designed to stay under power and mass limits.

The best solution is to compromise between the conflicting system properties with the
dominant bound given an edge over the others.

10.2. Initial allocation

After finding the graph representation of a problem the properties of the elementary operations
should be found. During the creation of the system graph only the functions performed by the
operations are fixed. It is the responsibility of the designer to find the physical properties of the
processors. As the actual representation of hardware capable of performing the desired
function depends on system constraints, selection of the module library must precede
scheduling. A bit-serial multiplier (slow, cheap but simple) may be a better solution in a flow
meter than a parallel model (faster, more expensive, requires more silicon) while a parallel has
the advantage of speed to be exploited in a PLC.
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Choosing the module library fixes execution time for the elementary operations as the
capabilities of a given construction are usually known. Knowing the modules also enables the
designer to set up classes for the elementary-operations, which contain elementary operations
that may be realised in the same kind of processor. Addition and subtraction may be performed
in the same kind of processor with an additional control bit carrying the sign of one of the
inputs. It is the responsibility of the control hardware to supply the additional control signals
required to implement multiple operation types.

After finding the module library, the data graph may be described using the time frame of its
elementary operations. As the execution times of the operations are fixed by now, a unique
limit to the earliest and latest execution times of a given operation may be found. These times
are called ASAP (As Soon As Possible) and ALAP (As Late As Possible) values. The ASAP
value is the maximum of the length of data dependencies between the elementary operation and
system inputs (considered to appear at cycle 0), while the ALAP value is L minus the longest
operation sequence between the operation and the system output (Fig. 38.). Operations may be
started at any of the time cycles between their ASAP and ALAP times. An operation with its
ASAP value (set by its predecessors) exceeding its ALAP time (bound by its successors) is
violating the latency constraint of the system, and requires repeated calculation of the latency.

Dela Simplified
(oneycycle) 9 9 notation
(from far one
synchronization) — cycle of

. — delay

Figure 38.
ASAP and ALAP values if L=7

57




@@_
Al
/

® /
@

ASAP SLT

Delaying e(1) increases
the number of the first

cycle in which e(2) may SLT(2)>ASAP(2)
be started, i.e. increases
its SLT value.

Figure 39.
ALAP and SLT

As ASAP and ALAP values are properties of the graph, they may be found using the
properties of the data dependencies only. The first and last possible starting cycle may change
for an operation, depending on its predecessors and successors (i.e. inserting delay to the
graph). This change of time frame may be expressed as change in the ASAP and/or ALAP
values of the operation. For this reason, it is feasible to introduce a set of current (actual)
limit times, which are the actual boundaries of the time frame. During scheduling, the ASAP
and ALAP cycles may not always describe the current time frame of an operation (since
inserting delay after an element decreases its ALAP cycle), so the terms Soonest Limit Time
(SLT) and Latest Limit Time (LLT) are used to describe the actual properties. (Fig. 39.)

An operation with an equal value as ASAP and ALAP is blocked in its place, with no freedom.
As this operation may not be moved without violating global timing constraints is not subject
to scheduling. From now on we do not deal with the scheduling of these so-called fixed
graphs (graphs where all the elementary operations are fixed), as they are completely defined
prematurely and so impossible to improve by scheduling.

The operations with an equal ASAP and ALAP value form the critical transfer sequences of
the graph. Inserting additional delay to these paths is impossible if the system is to be designed
under a latency constraint.
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10.3. Initial approximation of the optimal solution

Even if the composition of an optimal scheduling plan is unknown, it is possible to find the
result of an optimal set of SLT and LLT values, i.e. the minimum of hardware cost in the
following sense:

Initial approximation is possible as the total number of utilised processors does not change if

an operation is delayed or brought forth (Fig. 40.). A load presented by an operation and the

processing power of a processor may be measured in units: one unit is defined to be one

processor's worth of processing power in one time cycle. This way an operation (which

always executes in one processor, as it is elementary and so may not be split) executing for t(i)

time cycles occupies |
t(i)*1

processing units as it uses the resources of one processor for t(i) cycles. N of these operations,
executed simultaneously, would use '

t(i)*N

units. It is obvious that the scheduling of an operation does not affect the total units needed to
process the data as it depends on only the execution time, which does not change during
scheduling. Unit requirements of a given type of operations may be added to find the total
number of units required to complete all the elementary operations of that particular type.

e(2) uses two cycle's Delaying e(1) does not
worth of processors, change the quantity of
during cycles 1 and 2. processors used by e(2).

It still uses two cycle's
worth of processors,
now in cycles 2 and 3.

Figure 40.
Processor utilization

The total load of a data dependency graph must be compared to the processing capacity
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offered by the processors in the system. A processor, when built, is available to suitable
operations in the graph (those with an appropriate type) in all time cycles, i.e. between time
cycles 0 and L-1. N processors of a given type offer N*L units of processing power to be used
by operations.

During pipelined execution, time cycles are mapped to the 0..R-1 domain. As the pipelined
system accepts data every R time cycles, the units offered by the built-in processor capacity are
grouped so that a processor is considered to offer its capacity for R time cycles. N processors
of a given type offer a sum of N*R units during overlapping execution.

This way in the implementation stage, the built-in processor capability is equal to the number
of processors multiplied by latency (restart time for pipelined structures), as every processor
adds 1 cycle's worth of processor capacity to total system capability for every cycle in which it
is available. This must be equal to or greater than the sum of utilised units. Subtracting the
number of units utilised by operations from the total units in the implementation equals the
unused (idle, never utilised) units. This number may not be changed by altering the timing
values of operations (as we have already proved that the load of an operation (expressed in
units) may not change during scheduling) . The only factor that affects the number of these
unused units is the number of processors, which may be a non-negative integer only. Changing
the number of processors changes the number of available units with L or R.

Any solution wasting more than L (or, in case of pipelined execution, R) total units means it is
not optimal, possibly subject to iterative tuning of initial allocation and scheduling. This is
easily proven as if the number of unused units exceeds L (or R), decreasing the number of
processors by one decreases available processing power by L (or R) units, which still exceeds
the number of units needed.

Processors
#1 #2

Processor

Utili_zed: 2+2:=4 u d . Utllized: 2+2=4 u d
Available: 2*7=14 nuse Available: 1°7=7 nuse
As 10 units are wasted and 10>L=7, As only 3 units are unused,

only one processor is needed. and 3<L=7, number of processors

may not be decreased further.

This required a delay of one cycle
to be inserted before e(2).

Figure 41.
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Finding the optimum for the number of processors for type 2 operations

Some scheduling algorithms (notably the hardware-constrained list scheduling) generate a
solution that exactly matches the prescribed hardware utilisation properties. The disadvantage
is the increase of latency, which may be checked only after the maximum is reached.

For these algorithms, an iterative process may be used that starts off with the optimal number
of processors for all of the processor types, relaxing the bound until the latency requirement is
met.

10.4. Scheduling

Following the phase of initial allocation the graph to be scheduled may be described using a set
of ASAP and ALAP values, a description of processor properties and classes. Solution of the
scheduling problem removes any degree of freedom in time domain from the graph by
prescribing a fixed starting time for the operations. This transformation strips any mobility
from the elementary operations while pre-processing the graph to be available for a successful
allocation, resulting in an increased utilisation of the hardware.

Finding the optimal scheduling plan is unfortunately an NP-complete problem. As the optimal
solution of NP-complete problems may be found in a time that is increasing as an exponential
function of system complexity, a suitable polynomial-time replacement is needed. Solution
methods based on heuristics are used to achieve a scheduling plan near the optimum in less
time.

Integer Linear Programming (ILP) based methods transform data dependencies and processor
properties into linear systems of equalities and inequalities. Solution of these systems may be
performed by an external solver package or internal resources. As ILP-based solutions are
using external resources during the calculations, the time required to complete such a task may
not be easily forecast. ILP-based scheduling may be extended to handle pipelined execution.

List scheduling is a collection of fast but not optimal methods. Elementary operations are
scheduled based on a priority function, with the operation with the highest priority being
scheduled before the others. The priority function is generally based on operation mobilities,
1.e. related to the urgency of the given elementary operation. List scheduling usually ignores
any special properties of the graph (i.e. pipelined execution) and produces a fast, but not
always optimal solution. Execution time is a low (first or second) order polynomial function of
graph complexity.

Force-directed scheduling is a scheduling method with a polynomial (third order) function of

graph complexity. This scheduling algorithm schedules operations based on concurrence as a
function based on the utilisation of individual processors. As a constant utilisation is optimal,
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force-directed scheduling tries to balance the number of concurrent operations, with a cost
function based on the deviation from the ideal concurrence. This cost function resembles the
force exerted by springs based on Hooke's Law (hence the name force-directed).

Force-directed scheduling is a modular method, easily modified to suit special needs. Possible
extensions are optimisation for bus width, transfer (memory), conditional branches and more.
All the modifications are introduced as additional components of the cost function.

10.4.1. Scheduling using Integer Linear Programming (ILP)

A possible way to solve the scheduling problem is to transform data dependencies to equalities,
which in turn may be solved using any software or hardware designed for the task. As a solver
may be fine-tuned for the ILP problem, such a solution needs to concentrate only on the
scheduling process itself.

An ILP-based scheduler uses a set of linear equations and inequalities to describe System
behaviour. The variables are related to the starting times for the elementary operations, with
other constants and variables representing external constraints. Additional equalities are used
to make up data dependencies, inhibit violations of time frames and finally to define a cost
function needed to qualify results.

10.4.1.1. Equations for an ILP-based scheduler
In a given graph, after calculating the s(i) ASAP and 1(i) ALAP times for elementary

operations, all operations (from 1 to N) are assigned a number of binary variables, x(i,t) in such
a way that x(i,t) is 1 if the i. operation is started in the t. time cycle, 0 otherwise. The system is
considered to have a latency of L, operating with a restart time of R. A maximum cost of D
serves as an upper limit for realisation. J is the number of processor types, with a weight factor
of w(j) belonging to the j. processor type. The weight values are relative values, presenting a
way to describe the quality of a given solution. The number of processors of type j to be built
into the system is M(j), operation e(i) uses a processor of type j(i).

As we permit a different execution time for each of elementary operations, the i. elementary
operation started at the t. cycle (x(i,t)=1) reqﬁires t(i) time cycles to complete its task. For this
reason, the processor in which e(i) is executing remains inaccessible for new data during the t.
... (t+t(i)-1). time cycles. Any data arriving to processor input ports ruins the calculations. To
describe the occupied state of the processor, an operation started in cycle T is considered to be
occupying one processor for every t>T time cycles s. t. x(i,T)=1 and t-T<t(); this is the
definition of x'(i,t)=(1:t-T<t(i)), otherwise the value is 0.
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Our sets of equations are constructed in the following way:
a) All elementary operations must start in one of their respective time frames, so
sum(x(i,t):s()<t<l(i))=1.

This property removes a number of trivial zero variables (x(i,t) outside the time frame),
reducing system complexity.

b) All operations are started in such a way that the number of simultaneously used processors
of type j does not exceed M(j), for every possible j: 1<j<J. This is described using a set
of inequalities: sum(x'(i,t);j(i)=j)-M(j)<0, where x'(i,t) refers to the utilisation of the
processor executing operation i during the t. cycle, corrected based on t(i). t scans time
cycles 0 to L-1.

-

c¢) Data dependencies are not violated, so all operations are started at least t(i) cycles before
their direct successors. In other words, for every e(a) and e(b) pair such that e(a) is a
direct predecessor of e(b):
sum(t*x(a,t):s(a)<t<l(a))-sum(t*x(b,t):s(b)<t<l(b))<0.

As data dependencies are transitive, it is not necessary to set up inequalities for indirect
connections.

d) Total cost of the system does not exceed its allowable maximum:
C=sum(M()*w(j):15<N<D.

Point a) yields a set of N equations, b) leads to a set of J*L inequalities, c) results in an
inequality for every direct connection, d) presents an additional inequality. As the number of
variables is equal to the total cycle number of the time frames, number of inequalities is rapidly
increaSing as a function of N.

ILP-based solutions may be extended to handle pipelined execution mode by modifying point
b) and d). Instead of M(j) we introduce the overlapping utilisation M'(j), which is equal to the
simultaneously used processors in the case of pipelined execution. These numbers may be
generated by folding the x'(i,t) utilisations so that they represent the periodicity based on R, i.e.
an operation started in t=R adds one to the utilisation in time cycle 0. (All cycles are
transformed to the range 0<t<R-1.) This modified set is composed of inequalities of the
following type: sum(x'(i,t):j=j(i))-M'(j)<0, one for every pair of j and t values such that 1<j<J, 0
<t<R-1.

The virtual folding of the time domain may be performed by grouping inequalities belonging to
time cycles in such a way that the inequalities of cycles i and j are added if and only if 1 and j
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are folded to the same cycle i.e. i mod R=j mod R. This reduces the number of inequalities to
j*R, which is a significant decrease of system complexity, especially for slow systems (R<<L).
To calculate cost we simply modify d) so that

C=sum(M'()*w(j): 1j<K)<D.

After composing the inequalities, the optimal solution must be found. This solution consists of
binary numbers for x(i,t), which in turn prescribes the optimal starting time for operations.

10.4.1.2. Disadvantages

ILP-based scheduling depends on an external system to solve the sets of inequalities. It is not
usual to arrange a solution in the scheduler itself. While an external package may be highly
optimised for the task, the time needed to find the optimal solution may not be predicted. It is
feasible, however, to reduce the number of variables based on heuristics, which is a generally
accepted method to speed up calculations. No universal rule exists, however to perform such a
speedup. Hardware realisations are better defined as neural networks (Hopfield), as these are

capable of solving linear programming problems.

10.4.2. List scheduling

List scheduling is a collective name for simple methods using relatively small calculating power
based on primitive priority functions. Total number of steps to perform list scheduling is
proportional to the first (at most second) power of system complexity. Elementary operations
are put into a list based on their priority value, with the scheduling process scanning the time
domain. Conflicts (contradictions caused by identical starting time for operations) are dealt
with based on the priority function, with the operations having lower priority being delayed.
This delay is equivalent to a single cycle performed by a buffer.

As the main execution order of list scheduling is scanning in time domain, list scheduling is not
sensitive to the internal order of elementary operations. List scheduling requires a suitable
priority function, which is based on the mobility of the operations. The mapping of mobility to
priority should be (strictly) monotonously decreasing so operations with a lower mobility are
at an advantage during scheduling. The easiest way to transform mobility to priority is to
subtract it from a suitable positive integer value.

A useful extension of list scheduling is the case of resource-bound list scheduling. This
algorithm penalises the violation of hardware cost constraint. A suitable priority function is
based on a first-order decreasing function of mobility, with an upper limit set by operation
concurrence. This composite function does not deal with a distribution not violating system

constraints while it penalises the usage of additional hardware. An unfortunate disadvantage of
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resource-bound list scheduling is the iterative way to find optimal hardware constraints
(starting from the optimum, relaxing bounds until fulfilling latency condition).

List scheduling in itself does not involve analysis of pipelined structures. Multi-cycle
operations may be scheduled using these algorithms, using a structure similar to look-ahead
prediction. A possible solution of this problem is the introduction of long delay, lasting long
enough so the placement of the delayed operation is not tried before the processor occupied by
the winning operation is freed.

List scheduling depends on the internal resources of the scheduler to solve its problems. Digital
hardware implementations are possible.

10.4.2.2. Disadvantages

List scheduling, being the offspring of a simple function is a very fast algorithm, terminates in a
short time with a (usually) non-optimal solution. Compared to ILP-based scheduling, the total
execution time may be approximated by an upper bound. The results received after list
scheduling must be checked for activation and idle time. (If optimal hardware requirements are
not found before.)

As list scheduling presents a priority function based on local relations (i.e. mobilities), it
produces a local optimum for all of the time cycles, which in turn may yield non-optimal
pipelined utilisation. |

10.4.2.3. Execution of general list scheduling

A typical list scheduling algorithm scans data propagation in the system in time domain. It
requires the latency and complete description of the graph, calculates ASAP and ALAP times
and constructs the priority function. The SLT and LLT values are started as ASAP and ALAP
cycle “numbers. List scheduling simulates a straightforward method of delaying operations,
which is performed by fixing high-priority operations and delaying others (i.e. increasing their
SLT values).

The scheduler itself runs a loop for every time cycle, finding operations that could be started in
the current time cycle. In the case of competition, operations are given advantage in decreasing
order of priority. As this method starts with a fixed value of system latency, it is suitable for
scheduling systems operating under an execution time (latency) constraint. Most of the
practical applications fall into this category.

All the operations eligible for immediate start (winners) are started (i.e. their SLT and LLT
values are set to the current time value), while other competitors (the losers) are delayed. This
delay is usually performed by increasing their SLT. A delayed operation has got its priority
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function value increased as its LLT time does not change (i.e. remains equal to the ALAP
value) while delaying it increases its SLT. As the priority function is highest for the operations
with the lowest current mobility, a general list scheduling method preserves the latency of the
system. (It is impossible to win over an operation if it is currently in its ALAP cycle, as it
would require a negative mobility.) Elementary operations that are affected by delayed
operations through a data dependency are also subject to delay so data dependency relations

are not violated.

Checking pipelined utilisation must performed for systems operated in overlapping mode. The
local nature of the list scheduling does not enable the scheduler to directly check for violations
of hardware constraints in an easy way. A possible solution is to employ back-tracking, but this
makes the list scheduler slower.

4

A pipeline-aware list scheduler increases L
so that the overlapping operations fill
unused processor capacity

Figure 42.
List scheduling a pipelined structure

10.4.2.4. List scheduling under a hardware constraint

Systems that are to be realised under a fixed cost of hardware components may be scheduled
using a modified type of list scheduling. This algorithm does not pre-set the ALAP (and thus
the LLT) values of elementary operations, so total latency must be checked after fixing the last
operation in its place. This hardware-bound scheduling method scans time cycles in increasing
order, with the elementary operations checked for competition based on their SLT times. As
long as the total number of processors required to start all operations with their SLT values
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equal to the current time cycle stays lower than processor number constraint, they are all
started in the current time cycle. In case of violation, the excess must be delayed. There are no
generally useful rules to select the operations to be delayed, but a comparison of total
execution time following a given operation may help. After scanning the data dependency
graph the final value of latency may only be checked, but not modified.

List scheduling is capable of finding an exact match for the prescribed hardware constraints if
possible. A feasible balance between hardware costs and latency must be found. Due to the fast

execution of list scheduling, an iterative solution is not a problem.

As with the general list scheduling algorithm, list scheduling under a hardware constraint is
incapable of dealing with pipelined execution in detail.

10.4.3. Practical applications of list scheduling with hardware constraint

A typical application of hardware-constrained list scheduling is code generation for a RISC-
based processor. (Up-to-date CISC processors employ the same speedup technics, so an Intel
Pentium or P6 (Pentium Pro) is considered to be RISC in this context.)

Most RISC processors use an internal multiprocessor structure, i.e. instructions are fed to
execution units (we use this name to avoid confusion with processor, which now refers to the
RISC CPU itself). Units are the resources that must be properly utilised as they may work
simultaneously. A PowerPC 604, for example, contains three integer units, a floating-point and
a load-store unit. Two integer units are single-cycle (i.e. basic operations: compare, add, rotate
etc.) while the last is a multiple cycle unit performing integer multiply and divide instructions.
The floating point unit houses instructions that all have a latency of three cycles. Load-store is
used in address generation.

The 5 execution units are fed by an instruction fetch stage which scans program memory for
instructions. It is capable of supplying maximum 4 instructions during one cycle, 50 in an
optimal case a program sequence is executed in 1 cycle for every 4 operations it contains.
Trying to load data to a unit that is occupied is called a data overrun; such an operation is
prohibited and results in a delay which ends when the unit becomes available.

In examples S refers to a single-cycle, M# to a multi-cycle instruction of # cycles, F# to a
floating-point instruction (length is # cycles) and L to a load-store operation. (IF) refers to the
situation when the full fetch capability (4 instructions/cycle) may not be fully used due to data
overrun in the F unit (in this case, the next instruction must wait). Units of type F, L and M are
singular, while S units are built twice.

A sample program consists of four branches, which feature operations in memory that are in a
prescribed order:
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Branch 1 is L-S-S (operations 1, 2 and 3)
Branch 2 is M3-F2-M3-L-S (operations 4, 5, 6, 7 and 8)
Bfanch 3is S-L-S (operations 9, 10 and 11)
Branch 4 is L-F2-S-S (operations 12, 13, 14 and 15)

The operations of a branch must follow each other in strict order in memory, but there is no
prescribed order of the branches. They may even be stored mixed.

A program of the following composition would be executed in 6 cycles (indices refer to
operation numbers):

M34F251.182583L1289F213L10S14515M36S11L758

which sequence would be fed to the processor as

(cycle 0) M34-F25-L1-S5  ends as the 4-instruction fetch frame is exhausted.
(M3 keeps on executing in cycles 1 and 2, F2 in
cycle 1.)

(cycle 1) S3-L12-Sg ('F)  ends as the following instruction is of type F, which

| | causes a data overrun in the F execution unit. (It may

not be loaded as the F unit did not yet finish its
previous calculations)

(cycle 2) F213-L10-S14-S15 ends as the 4-instruction fetch frame is exhausted.

(cycle 3) M34-S11-L7-Sg  ends as the 4-instruction fetch frame is exhausted.

As the last M3 instruction keeps on executing in cycles 4 and 5, the total execution time
(reading the code to the processor and executing the program) takes 6 cycles.

A similar program, which fulfils the branch conditions is executed in 8 cycles:

L1S2S3SgMygF25M36L7L10L12511F21358514515
as the fetch happens like

(cycle 0) L1-S2-S3  (!S)  ends as the next instruction is an S, which may not be
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fetched as it causes a data overrun

(cycle 1) Sg-M34-F25  (!F) ends as the following instruction is of type M, which
causes a data g)vermn in the M execution unit. (The
next M operation may be fetched in cycle 4 as the M3
started in this cycle finishes in cycle 4.)

(cycle 4) M3g-Ly ('L) data overrun in unit L finishes cycle

(cycle 5) L1g ('L)  no more instructions may be fetched, data overrun
occurs in unit L

(cycle 6) L12-S11-F213-Sg

(!S)  data overrun in unit S

(cycle 7) S14-S15 input sequence is finished.

In addition to scheduling issues (i.e. prescribing the execution order of data-independent
instructions) common programming technics include operation type swapping. A common

usage of this (often used during creation of computer demos) is to transform some of the

floating-point operations to integers or vica versa. This method enables the programmer to
feed the processor with a homogenous mixture of different operation types, which increases
data throughput as it decimates data overruns (a common disadvantage of similar operations).
This algorithm is outside the domain of scheduling, as it may only be modelled using a
transformation of the data graph. (It swaps the operation type and execution time of
operations.)

A PowerPC 604 microprocessor could be described as a system with a maximum of 2 type S
and a maximum of 1 each of type L, M and F processors. Execution times are 1, 1-3, 3 and 2
respectively. After finding the optimal latency for a given instruction sequence, the actual
latency must be calculated (based on the fetch limit of 4 instructions every time cycle).

Operations that are not optimised for the given processor structure are likely to cause data
overruns (referred to as pipeline stalls) often. This is the reason why most programs for Intel-
based PCs feature special code for Pentium processors.

As some of the speed improvement of CISC processors is based on the increase in execution
unit numbers (the Intel Pentium features a two-way internal pipeline (fwo-way superscalar
structure), the Pentium Pro a similar three-way superscalar structure)), care must be taken for
programs to produce code that is subject to optimisation. The Pentium Pro, for example, was
optimised for 32-bit-based input streams; the Windows 95 operating system of Microsoft
‘contains enoughl6-bit code to disable its internal pipeline. As the 100 % speed increase
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between a Pentium and a Pentium Pro is based mainly on the improvement of pipeline
properties, Windows 95 runs slower on Pentium Pro-based systems than on Pentiums.

As the execution pipes of the Pentium processor are not identical, a regular sandwich-like
pfogram structure is needed to keep the processor occupied without stalls. This structure must
be crafted carefully so that the program code contains a simple instruction following a
complicated one. Simple instructions fit to the V pipe of the processor while the U pipe works
with the complicated one, thus making an extra cycle unnecessary. A suitable model for this is
the U pipe being a general processor (capable of holding any kind of operations) while the ¥V
pipe is a processor that may be used only for executing single-cycle operations.

10.4.3.1. Loop unrolling

Another typical usage of scheduling is loop unrolling, a trick in common usage. This method
is useful in the core of time-critical applications, which are usually executed millions of times.
The increase in throughput is the result of a homogenous, and therefore easily optimized code. |
The following code fragment (using Intel assembly for a numeric coprocessor)

loop:

fld [esp+8]
fmul [ebxteax*4]
fadd [ecxteax*4]
fstp [ecxteax*4]
inc eax

cmp eax,ebp
jle loop

is the trivial solution to a section of Gaussian elimination. This code offers nothing to optimize
as the small number of operations makes it difficult to tune anything. Expanding the loop 3
times yields

loop:

£fld [esp+8]

fmul [ebx+eax*4]
fadd [ecxteax*4]
fstp [ecxteax*4]
fld [esp+8]

fmul [ebxteax*4+4]
fadd [ecxteax*4+4]
fstp [ecxteax*4+4]
£fld [esp+8]

fmul [ebx+eax*4+8]
fadd [ecxteax*4+8]
fstp [ecxteax*4+8]
add eax, 3

cmp eax,ebp

jle loop

“which increases the number of operations (and the bytes occupied) to 300 % of the original.
As there are more operations now, the operations in the branch may be reordered and the
numeric coprocessor may be stuffed with some of the simple instructions; this increases
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pipeline utilization.

10.4.4. Force-directed scheduling

Force-directed scheduling is a modular scheduling algorithm, based on probabilistic
approximations of utilisation. It is based on the idea of balancing operation load in such a way
that the difference of minimum and maximum of concurrently used processors is a small value.
In this case the number of processors required is greater than or equal to the maximum value,
which in turn results in a high averagé utilisation.

The deviation from the average utilisation is weighted with the concurrent load in a way similar
to Hooke's law (F=-W*deltaW). Scheduling seeks the minimum value of a force-like quantity.
Additional components may be also introduced to the algorithm, usually as an additional
component of the force. This flexibility, in addition to the good results achieved with force-
directed scheduling make this algorithm one of the feasible, useful methods. Sometimes the
algorithm serves as an example or as a special form of a benchmark.

Force-directed scheduling is capable of dealing with optimisation of both elementary
operations and delays (i.e. buffers). Introducing buffers to the scheduling stage requires
changes in the data models, so it is not usually used. This modification also increases the
number of elementary operations in the graph, which increases scheduling time.

The load of an elementary operation is equal to the number of processors used during the
execution of the operation, thus it is 1 for every time cycle in which the operation is active, for
every fixed operation. The load of moving operations is calculated in a different way:

As the starting cycle of a moving operation is unknown, it may be approximated only. A
suitable approximation is to use a uniform probability function for every cycle of the time
frame. The start probability function is defined so that

V(i,t) is equal to the probability of starting elementary operation e(i) in time cycle t.
V(,t)= 1/(1(i)-s(i)+1) for every t such that s(i)<t<I(i); otherwise V(i,t)=0.

The V(i,t) function is trivial for fixed operations, as it is equal to 1 for the starting cycle

t=s(0)=1(i).

As multicycle operations are using a procesSor for every cycle in which they are working, a

function must be used to describe the actual load of elementary operation e(i):

G(i,t|k) is equal to the load of elementary operation e(i) in time cycle t, with the assumption
that e(1) is started in time cycle k.
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G(,tlk)= 1 for every t such that k<t<k+t(i)-1; otherwise G(i,t|k)=0.
The total load of e(i) is a function based on V(i,t) and G(i;t|k):
U(1,t)=sum(G(,tk)*V(i,k):s()<k<l(i)) for 0<t<L-1.

After finding the total load for all of the operations, the load of operations using the same type
of operations must be totalled to find the utilisation of processors as a function of time:

W(,t) is equal to the number of processors of type j used in time cycle t; the load
function for operations of type j.

W(j,t)=sum(U(i,t):j(i)=j) for 0<t<L-1.

During pipelined execution time cycles which are congruent modulo R are happening
simultaneously, so the load functions must be folded to reflect this. The folding process
transforms the load in cycle t to cycle (t mod R):

C(j,t) is equal to the number of processors of type j used in time cycle t during
pipelined execution, the overlapped load function of operations of type j.

C(j,t)=sum(W(j,t):n mod R=t for (0<n<L-1)) for 0<t<R-1.
(For non-pipelined graphs C(j,t)=W(j,t))
The number of processors to be built to the hardware unit must be found as
max(whole(C(j,t)):0<t<L-1),

where the whole(x) function returns the smallest integer value greater than or equal to x. A
uniform load is desirable as it results in an overall high utilisation and low idle percentage.

The force function describes the relative quantity of two scheduling plans. It is defined as sum
in the form

F(A)=sum(sum(w(j)*C(j,t)*AC(j,t): 0<t<R-1):1<j<)),
where w(j) is the relative cost of type j processors.

Calculation of the F function requires the value of C(j,t) in both of of the scheduling plans. A
negative value of F means a transition to a better scheduling plan. The optimal starting cycle
for an operation may be found by comparing the transition results from its initial, moving state
to the states found after fixing the operation to every cycle in its time frame. The time cycle
resulting in the smallest F value is chosen as the optimal solution, after which the operations
loses its mobility and is fixed to the optimal t cycle. ’ '
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Force-directed scheduling scans all of the moving elements, finding the minimum of F for all of
their possible starting cycles. As the optimum is found, the element is fixed there, and the next
element becomes available for scheduling. -

10.4.4.2. Disadvantages

As force-directed scheduling scans the elementary operations sequentially, it is not immune to
the effects of ordering the operationé (transitions to local optima does not always end in a
global optimum). A typical example of that is the so-called bottleneck, an operation with
multiple inputs and outputs separating the graph (Fig. 43.). Premature scheduling of a
bottleneck operation may result in a disaster for other operations as it reduces the time frames
for a lot of operations.

<.—_

Bottleneck
<_

Figure 43.
Section of a graph containing a bottleneck

As force-directed scheduling has an execution time of order 3 as a function of system

complexity, it executes much slower than list scheduling.

Due to the floating-point operations in a force-directed algorithm, hardware implementations
are much more difficult to design than list-scheduling or ILP-based scheduling.

10.5. Conditional execution

Elementary operation graphs may contain branches that are executed if and only if an
expression is valid. Presence of such a branch is a serious problem during scheduling as
conditional execution may be treated as a static (worst-case) problem or using a heuristic
model (which requires previous information on the composition of the data processed by the
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hardware). Choosing the model of the conditional execution is not easy as both methods are

useful only under conditions.

10.5.1. Worst-case model

Worst-case models of conditional execution prescribe the system to be able to handle any
combination of inputs without decreasing performance. This condition during scheduling
requires the scheduler to find the worst-case input and find a hardware plan that is capable of
dealing with the problem. Worst-case design is usually an overestimation of system load and
increases realisation costs due to the additional resources that must be available (but not used

in a system that never approaches the worst-case load).

The worst-case model of the conditional branches treats the branches as if they were executing
always fully parallel (requiring the maximum of resources the branches need in a given time
cycle). A system designed to deal with such a load would not be ran over during regular usage
as the actual usage of processors may not exceed the worst-case value. This property,
however, means that some of the built-in processors would not be used most of the time.

10.5.2. Probability-based model

The opposite of worst-case design is the probability-based method of conditional execution.
This approximation presents a model of conditional execution that needs the distribution of
input values. The conditional branches are given weight values depending on the probability of
execution in the mutually exclusive branches. The condition at the beginning of the branches is
said to take the branches with a similar distribution. After this step, data propagation depends
on the inputs following this distribution; data that deviates may slow down the system.

A typical usage of probability-based conditional execution is the internal structure of RISC
processors. Such a processor features different types of execution units, each capable of
dealing with a given set of instructions. Instructions executed inside the processor are entering
one of the units depending on the type of operation they perform. In the case of a PowerPC
604, for example (which CPU contains two multi-cycle integer, one multi-cycle integer, a
floating-point and a load-store unit), conditional execution is present as the processor activates
one of its execution units depending on the type of the next instruction. As the PowerPC 604
may fetch 4 instructions in a single clock cycle, worst-case design would suggest a minimum of
4 pieces of all execution units (more for multi-cycle types). The designers of the PowerPC
chose to reduce the number of units to one in all types save single-cycle integer operations
(which are built twice). This realisation means that the PowerPC 604 keeps on running at
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maximum speed (starting the execution of four instructions every clock cycle) if the
instructions may be dispatched without stalls. As the number of units is lower than the worst-
_case value, the processor may encounter instructions that may not be dispatched to the
respective units as they are still processing the previous instruction. This situation (a data
overrun or stall) prevents execution of instructions and results in idle clock cycles for the
processor. From the outside the processor may be modelled as an execution unit that executes
instructions with a speed that is not independent of the input sequence. This property is a
disadvantage if the method is compared to worst-case design (as it changes the characteristics
of the elementary operations). ;

RISC (and internal pipeline) processors designed like the PowerPC 604 are to be programmed
in such a way that program instruction sequences are designed using knowledge of the internal
structure. For general-purpose hardware, such an assumption may not be made, so worst-case

design may be more useful for systems that are latency-bound.

10.5.3. Realisation

Force-directed scheduling is an algorithm that may be easily extended to process graphs
containing conditional execution. This modification does not modify the cost function, rather
the generation of the load functions (W, C and U). The modified functions are used to find the
force values and the algorithm proceeds normally after this step.

Scheduling a conditional execution block is done in two steps: the inside and the outside of the
block are to be treated in a different way; the order is not presrcibed. A conditional execution
block (or conditional block) is the set of branches between the 'fork' operation (the one with
the distributor property) and the 'join' operation (the receptor).

From the outside, the worst-case processor load in a given time cycle is equal to the maximum
that is possible inside the block (i.e. the maximum of processor reqirements for all branches).
This may be expressed as the

U'(i,t)=max (U(i,t,k) : 1<=k<=b)

worst-case load function of the conditional block, where b is the number of conditional
branches inside the block and U(i,t,k) is the U(i,t) load function for branch k; this function is
the sum of load functions for the elementary operations in a given branch. The worst-case load
function means the extreme value of the load of operations inside the block. Scheduling
operations outside the block may use the U'(i,t) function as a load model of the block.

Scheduling the operations inside the block may be done using the load function(s) of the
operations outside that block. Multiple conditional blocks use the worst-case load functions as

75




they are independent (a block is independent of the other).
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10.6. Examples

For comparison of different scheduling algorithms, we use the same problem graph. During
scheduling the pipelined execution mode is also used, with a restart time of 5 cycles.

System inputs
a Single-cycle
6 operation (#7)

Two-cycle
operation (#6)

== System output

Our system is operating in an environment such that latency must be equal to or less than 7.
This is equivalent to ALAP(4)<6. (This constraint prescribes L to be less than 8, and is set by
the external units connected to our device. Any solution resulting in L greater than 7 must be
discarded as it ruins the timing for the environment. A latency value below 8 is suitable,

probably extended to 7 using inserted delay elements.)

We distinguish between two different processors, one used for execution single-cycle
operations, the other one for multiple-cycle execution. Single-cycle (type 1) processors' cost
is one-half of the cost of multi-cycle (type 2) processors. (w(1)=1, w(2)=2)
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10.6.1. ILP-based scheduling

The respective cost for processors is proportional to the execution time, i.e. w(1)=1, w(2)=2.
Total system cost must be kept under D=12. Number of processors is M(1) and M(2), total
implementation cost is C=w(1)*M(1)+w(2)*M(2)=M(1)+2*M(2).

Operation ASAP cycle ALAP cycle Unit type Execution
number time
i s(i) [[Q) (0] t(i)
1 0 2 1 1
2 1 3 2 2
3 3 5 1 1
4 4 6 1 1
5 0 4 1 1
6 0 3 2 2
7 2 5 1 1
The non-trivial starting time variables (x(i,t)) are found based on the ASAP and ALAP
values:
t x(1,1) x(2,t) x(3,1) x(4,1) x(5,t) x(6,t) x(7,1)
0 | x(1,0) 0 0 0 x(5,0) x(6,0) 0
1 | x(LD) x(2,1) 0 0 x(5,1) x(6,1) 0
2 | x(12) | x22) 0 0 x52) | x62) | x(72)
3 0 x23) | xG3) 0 x63) | x(63) | x(13)
4 0 0 x(3,4) | x(4,4) x(5,4) 0 x(7,4)
5 0 0 x(3,5) | x(4,55) 0 0 x(7,5)
6 0 0 0 x(4,6) 0 0 0
As there

are multiple-cycle operations present, they use their processors both during their

first and second cycle. For this reason, the number of processors used in the implementation

of such an operation is expressed by x'(i,t):

t x'(4,t) x'(2,t) x'(6,t)

for every single-cycle

operation

0 x(1,0) 0 x(6,0)
1 x(i,1) x(2,1) x(6,1)+x(6,0)
2 x(i,2) x(2,2)+x(2,1) x(6,2)+x(6,1)
3 x(i,3) x(2,3)+x(2,2) x(6,3)+x(6,2)
4 x(i,4) x(2,3) x(6,3)
5 x(1,5) 0 0
6 x(1,6) 0 0

For a pipelined execution mode with R=5, the sixth cycle is executing simultaneously with
cycle 0 of the next data packet. This is also true for the 7th and 1st cycles, so this pipelined
utilisation is found by folding the table:

t x"(,1) x"(2,0) x"(6,1)
for every single-cycle
operation
0 x{(1,0)+x(1,5) 0 x(6,0)
1 x(i,1)+x(1,6) x(2,1) x(6,1)+x(6,0)
2 x(1,2) x(2,2)+x(2,1) x(6,2)+x(6,1)
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x(6,0)-M(2)<0
x(2,1)+x(6,1)+x(6,0)-M(2)<0
(as x'(2,1)=x(2,1) and x'(6,1)=x(6,0)+x(6,1))
x(2,2)+x(2,1)+x(6,2)+x(6,1)-M(2)<0
x(2,3)+x(2,2)+x(6,3)+x(6,2)-M(2)<0
x(2,3)+x(6,3)-M(2)<0

The trivial lines (i.e. for t=5: 0-M(2)<0) are omitted.

b.2) Pipelined execution, time domain is folded:

In addition to multicycle operations, system time must be folded to reflect the overlapping
execution, so we need the overlapping x"(i,t) values. The total of simultaneously utilised
processors must be found for every t such that 0<t<R-1:
x(1,0)+x(5,0)+x(3,5)+x(4,5)+x(7,5)-M(1)<0
x(1,1)+x(5,1)+x(4,6)-M(1)<0
x(1,2)+x(5,2)+x(7,2)-M(1)<0
©x(3,3)+x(5,3)+x(7,3)-M(1)<0
x(3,4)+x(5,4)+x(7,4)-M(1)<0

(as x"(4,0)=x(4,0)+§(4,5)=x(4,5),
x"(3,0)=x(3,0)+x(3,5)=x(3,5),
X"(7,0)=x(7,0)+x(7,5)=x(7,5),
X"(4, 1)=x(4,1+x(4,6)=x(4,6),

x"(3,1)=x(3,1)+x(3,6)=0 and
x"(7,1)=x(7,1)+x(7,6)=0.)

Other operations (e.g. e(1)) are unaffected because of their ALAP times: 1(1)<R-1)
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x(6,0)-M(2)<0x(2,1)+x(6,1)+x(6,0)-M(2)<0
x(2,2)+x(2,1)+x(6,2)+x(6,1)-M(2)<0
x(2,3)+x(2,2)+x(.6,3)+x(6,2)-M(2)£O
x(2,3)+x(6,3)-M(2)<0

(Note that because of the ASAP and ALAP times of operations #2 and #6, the folding of

inequalities did not affect the system for operations of type 2.)
c) Data dependencies must not violated. This prescribes the following relations:

e(1)—e(2),e(2)—>e(3),e(3)—~e(4),e(5)—e(3),e(6)—e(7),e(7)—e(4).

Note that the following indirect dependencies are not used:

e(1)—e(3),e(1)—>e(4),e(5)—e(4),e(6)—e(4).

(They result in a number of redundant inequalities.)

0%x(1,0)+1%x(1,1)+2%x(1,2)-1#x(2,1)-2*x(2,2)-3%x(2,3)<-1

1%x(2,1)+2%x(2,2)+3*x(2,3)-3*x(3,3)-4*x(3,4)-5*x(3,5)<-1

3*x(3,3)+4*x(3,4)+5%x(3,5)-4*x(4,4)-5*x(4,5)-6*x(4,6)<-1
0*x(5,0)+1*x(5,1)+2*x(5,2)+4*x(5,4)-3*x(3,3)-4*x(3,4)-5*x(3,5)<-1

0%x(6,0)+1*x(6,1)+2*x(6,2)+3*x(6,3)-
2%x(7,2)-3*x(7,3)-4*x(7,4)-5*x(7,5)<-1

2%x(7,2)+3*x(7,3)+4*x(7,4)+5*x(7,5)-4*x(4,4)-5%x(4,5)-6*x(4,6)<-1

The redundancy of the e(1)—>e(3) dependency is clear as it is equivalent to the sum of the

e(1)—e(2) and e(2)—>e(3) inequalities. (Trivial proof for the transitive property of '—')

d) Total implementation cost must be kept below cost limit:
C=M(1)+2*M(2)<D,
D=12.
Solutions minimise C. A possible solution is the following:

a) Non-pipelined execution:
x(1,0)=x(2,1)=x(3,3)=x(4,6)=x(5,1)=x(6,3)=x(7,4)=1,
M(1)=M(2)~1,
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| C=3<D.

b) Pipelined execution:
x(1,0)=x(2,2)=x(3,4)=x(4,6)=x(5,3)=x(6,0)=x(7,3)=1,
M(1)=M(2)=1,
C=3<D.

10.6.2. List scheduling, no hardware constraint

Our system is operating in an environment such that latency must be equal to or less than 7.
This is equivalent to ALAP(4)<6. We distinguish between two different processors, one used

for execution single-cycle operations, the other one for multiple-cycle execution.

Number of processors (M(1) and M(2)) must be minimised. Priority (p(i)) is equal to 4-m(i),

operations with a lower priority value are at a disadvantage.

Operation SLT LLT Unit type Mobility Execution
number A()-s(@) time
i s(i) 1(i) i) m(i) t(i)
1 0 2 1 2 1
2 1 3 2 2 2
3 3 5 1 2 1
4 4 6 1 2 1
5 0 4 1 4 1
6 0 3 2 3 2
7 2 5 1 3 1

Time domain is scanned in increasing order:

0) Competition between e(1) and e(5). As p(1)=2>p(5)=0, e(5) is delayed, this affects no other
operation as e(5) was not in its ALAP cycle. The winner, e(1) is fixed so s(1)=1(1)=0. e(6) is
fixed without competition as there is no other operation of type 2 that may be started in t=0.

i s(i) 1(i) m(i)
1 0 0 0
2 1 3 2
"""" 3 3 5 2
4 4 6 2
5 1 4 3
6 0 0 0
7 2 5 3

Cycle 1) No competition, e(2) and e(5) are started.
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i s(i) 1) | m()
1 0 0 0
2 1 1 0
3 3 .5 2
4 4 6 2
5 ] ] 0
6 0 0 0
7 2 5 3

Cycles 2), 3) and 4): e(7), e(3) and e(4) are fixed without competition.
Cycles 5) and 6): no operations remain to be scheduled for these cycles.

Final result:

i s@i) 1(i) m(i)
1 0 0 0
2 1 1 0
3 3 3 0
4 4 4 0
5 1 1 0
6 0 0 0
7 2 2 0

This scheduling plan requires one unit of type 1 and two units of type 2 as the second cycle of
e(6) is operating simultaneously with the first cycle of e(2), which requires more processors
than the optimal solution M(2)=1. Total latency is 5. (This may be extended to 7 by inserting a
delay of two cycles somewhere, if latency should be exactly 7. This is a decision that must be
made judging the properties of the environment.)

Should the system be operated with a restart time of 5, there would be no change in the
number of processors required as L=5 is equal to R=5.
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10.6.3. List scheduling under hardware constraint

Our system is operating in an environment such that only one processor is available for type 1
and one for type 2 (M(1)=M(2)=1). System latency must be found.

Priority (p(i)) is equal to the total execution time for operations following e(i), Operations
with a lower priority value are at a disadvantage.

Operation Initial Unit type Priority Execution
number ASAPcycle |- time
i s(®) i m(i) t(
1 0 1 4 1
2 1 2 2 2
3 3 1 1 1
4 4 1 0 1
5 0 1 2 1
6 0 2 2 2
7 2 1 1 1

Time domain is scanned in increasing order:

0) Competition between e(1) and e(5). As p(1)=4>p(5)=2, e(5) is delayed. The winner, e(1) is
fixed so s(1)=1(1)=0. e(6) is fixed without competition as there is no other operation of type 2
that may be started in t=0.

s(i)
0

Al W e |-
D= [

7 2

1) e(5) is started. e(2) may not be started as the only available type 2 processor is occupied; it
| contains the data of e(6) in its second cycle. Delaying e(2) increases s(3) and s(4) due to data
- dependencies.

s(i)
0

SN B O IR [ [
i~

2

2) e(2) and e(7) are started. There is no competition.
3) No operation is started as there is no s(i)=3 value in the table.

4) and 5): e(3) and e(4) are started without competition.
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Final result:

s(i)

Y| ||| W ==
S|—=|n|&ir

This scheduling plan requires one processor of type 1 and one of type 2, as prescribed.
Latency, however, is increased to 6.

Pipelined execution with a restart time of 5 violates system constraints, as e(4) is started in
t=5, e(1) in t=0, which cycles are happening simultaneously. This results in a collision of data
if a single processor is used for (1) and e(4). A pipeline-aware list scheduler would delay
e(4) so that it fits into a 'hole' in pipelined mode (Fig 42.).

The first unoccupied cycle would be t=8, so e(4) would be fixed to s(4)=8. This increases
latency to L=9.

10.6.4. Force-directed scheduling, non-pipelined execution

To calculate the functions of the force-directed scheduling, we use a common denominator of
60, so most of the calculations are transformed to integers.

s@ | 1@ i@ | t@) | VG0 | VG,D | VG,2) | V(GE,3) | Va4 [ Va5 | V(34,6)
0 2 1 1 20/60 | 20/60 | 20/60
20/60 | 20/60 | 20/60
20/60 | 20/60 | 20/60 :
20/60 | 20/60 | 20/60
12/60 | 12/60 | 12/60 | 12/60 [ 12/60
15/60 | 15/60 | 15/60 | 15/60
15/60 | 15/60 | 15/60 | 15/60

N | W=
MCOAMIH
iAW
i [N |t | st | s [ DN
— e [ | | s [N

As there are multi-cycle operations in the graph, U(i,t) must be adjusted to reflect this. For
other operations, U(i,t)=V(i,t). C(j,t)=W(j,t) ds there is no overlapping in time domain.

(Type 2 operations are in bold, changes are highlighted with italic.)
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si) | 10) 1@ [ ) [ vao Tuad [ vua2) | u63) T uds [ uias [ude)
0 | 2 [ 1 [ 1 | 20060 | 20/60 | 20/60
20/60 | 40/60 | 40/60 | 20/60
R 20/60 | 20/60 | 20/60
20/60 | 20/60 | 20/60
12/60 | 12/60 | 12/60 | 12/60 | 12/60
15/60 | 30/60 | 30/60 | 30/60 | 15/60
1 15/60 | 15/60 | 15/60 | 15/60
CLy | 32/60 | 32/60 | 47/60 | 47/60 | 67/60 | 55/60 | 20/60
ce,n | 15/60 | 50/60 | 70/60 | 70/60 | 35/60 | 0/60 | 0/60

We find the optimal starting cycle for e(l) first. Time cycles are scanned in increasing
direction, from s(1)=0 to 1(1)=2.

DN |t |t | | DN

MUY -N L) F N [0) [ ) Py PO
Nio|o|[sw|m=
wlwlalon|un|w
it | N [t |t | = [N

Fixing e(1) to cycle 0 yields

s@ | 16) | j@) |t Uao | UGD | UG2) | UG3) | UG4 [ UGS | UG6)
0 0 1 1 60/60

2 20/60 [ 40/60 | 40/60 | 20/60

1 20/60 | 20/60 | 20/60
1 20/60 | 20/60 | 20/60
1

2

12/60 | 12/60 | 12/60 | 12/60 | 12/60
15/60_| 30/60 | 30/60 [ 30/60 | 15/60
1 15/60 | 15/60 | 15/60 | 15/60
co(Ly | 32/60 | 32/60 | 47/60 [ 47/60 | 67/60 | 55/60 | 20/60
co2,0) | 15/60 | 50/60 | 70/60 | 70/60 | 35/60 [ 0/60 | 0/60
cay | 72/60 | 1260 | 27/60 | 47/60 | 67/60 | 55/60 | 20/60
c, | 15/60 | s0/60 | 70/60 | 70/60 | 35/60 | 0/60 | 0/60
ACLY) | 40760 | -20/60 | -20/60 [ 0 0 0 0
ACZH) | 0 0 0 0 0 0 0

(CO(1,t) denotes the initial, C(i,t) the adjusted C() values. AC(i,t)=C(1,t)-CO(1,t))

N[N || W N | =

VMWl |W
el 1 S R

IS || W]

F(A)=(32*40-32*20-47%20)/3600=-300/3600, the negative sign means an improvement of the
initial schedule.

Fixing e(1) to cycle 1 results in

i {.s@ | 1) [ ja [ tdD) U@G,0) | UGD | UG2) | UG3) | UG | UGS) | UG6)
1 1 ] 1 1 60/60

21 2 3 2 2 30/60 | 60/60 [ 30/60

3 4 5 1 1 30/60 | 30/60

4 135 6 1 1 30/60 | 30/60
510 4 1 1 12/60 | 12/60 | 12/60 | 12/60 | 12/60

610 3 2 2 15/60 | 30/60 | 30/60 | 30/60 | 15/60

712 5 1 1 15/60 | 15/60 | 15/60 | 15/60

Co(1,ty | 32/60 | 32/60 [ 47/60 | 47/60 | 67/60 | 55/60 | 20/60
Co2,t) | 15/60 | S0/60 | 70/60 | 70/60 | 35/60 | 0/60 0/60
C(L,p 12/60 | 72/60 | 27/60 | 47/60 | 67/60 | 75/60 | 30/60

CQ2, 15/60 | 30/60 | 60/60 | 90/60 | 45/60 0 0
AC(L,0) | -20/60 | 40/60 | -20/60 | -20/60 | -10/60 | 20/60 | 10/60
ACQ2,0) 0 -20/60 | -10/60 | 20/60 | 10/60 0 0

F(A)=2*(-50%*20-70*10+70%20+35%10)/3600+
+H(-32%20+32%40-47*20-47%20-67*10+55%20+20*10)/3600
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F(A)=-410/3600

Fixing e(1) to cycle 2 causes

i]si)[10) [in ] | uvao Tuid [ va2) | 63 [ uds [ uias) [ude)
1| 2 21 1 60/60
2] 3| 3|2 2 60/60 | 60/60
3] 5|5 |1 1 60/60
4] 6 | 6 | I 1 60/60
500 4 |1 1 12/60 | 12/60 | 12/60 | 12/60 | 12/60
6|0 | 3| 2 2 | 15/60 [.30/60 | 30/60 | 30/60 | 15/60
712 |5 |1 1 15/60 | 15/60 | 15/60 | 15/60
Co(L,0) | 32/60 | 32/60 | 47/60 | 47/60 | 67/60 | 55/60 | 20/60
co2,t) | 15/60 | 50/60 | 70/60 | 70/60 | 35/60 | 0/60 | 0/60
Cc(Ly | 12760 | 12/60 | s7/60 | 27/60 | 27/60 | 75/60 | 60/60
ce,t) | 15/60 | 30/60 | 3060 | 9060 | 75/60 | 0 0
AC(LY) | 20/60 | -20/60 | 40/60 | -20/60 | -40/60 | 20/60 | 40/60
AC2H | 0 | -20/60 | -40/60 | 20/60 | 40/60 | o 0

F(A)=2*(-50*20-40*70+20%70+40*35)/3600+

+(-20%32-20*32+40*47-20*47-40*67+20*55+40%*20)/3600

F(A)=-5120/360

0
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As F(A) had its minimum when e(1) was fixed to cycle 2, this position is the initial scheduling

plan for the next operation. Note that the suceessors of e(1) are also fixed as e(1) is started in

its ALAP cycle:

i|s@ | 1d) [ j@) | td) U@G,0) | UGD { UG2) | UG3) | UGH | UGS) | UGS
11 2 2 1 1 60/60
213 3 2 2 60/60 | 60/60
315 5 1 1 60/60
41 6 6 1 1 60/60
510 4 1 1 12/60 | 12/60 [ 12/60 | 12/60 | 12/60
6 {0 3 2 2 15/60 | 30/60 | 30/60 | 30/60 | 15/60
71 2 5 1 1 15/60 | 15/60 | 15/60 | 15/60
C{,p 12/60 [ 12/60 | 87/60 | 27/60 | 27/60 | 75/60 | 60/60
C(2,t) 15/60 | 30/60 | 30/60 | 90/60 | 75/60 0 0

The next operation to schedule is e(6). Time domain is scanned in increasing order, from

cycle 0 to cycle 3. As we fix e(6) to cycle O:

i|s@ |1 | ja t(i) UG,0) | UGH | UG2) | UG3) | UGS | UGS) [ UG,6)
1 2 2 1 1 60/60
2 3 3 2 2 60/60 [ 60/60
3 5 5 1 1 60/60
4 6 6 1 1 60/60
5 0 4 1 1 12/60 | 12/60 | 12/60 12/60 | 12/60
6 0 0 2 2 60/60 | 60/60
71 2 5 1 1 15/60 | 15/60 | 15/60 | 15/60
Co(1,9) 12/60 | 12/60 | 87/60 | 27/60 | 27/60 | 75/60 | 60/60
COo(2,t) | 15/60 | 30/60 | 30/60 | 90/60 | 75/60 0 0
C(,9 12/60 | 12/60 | 87/60 | 27/60 | 27/60 | 75/60 | 60/60
C(2,t) 60/60 | 60/60 0 60/60 | 60/60 0 0
AC(L 1) 0 0 0 0 0 0 0
AC(Q2,t) | 45/60 | 30/60 | -30/60 | -30/60 | -15/60 0 0
F(A)=2*(45*15+30*30-30*30-30*90-15*75)/3600+(0)/3600=-6300/3600.
Setting cycle 1 as starting time for e(6) yields
i|s@ |l | jo t(i) UG,0) | UGD | UG2) | UG3) | UG4) | UG5) | UG,6)
1 2 2 1 1 60/60
2 3 3 2 2 60/60 | 60/60
3 5 5 1 1 60/60
4 6 6 1 1 60/60
5 0 4 1 1 12/60 | 12/60 | 12/60 | 12/60 | 12/60
6 1 1 2 2 | 60/60 | 60/60
7 3 5 1 1 20/60 | 20/60 | 20/60
CO(L,1) 12/60 | 12/60 | '87/60 | 27/60 | 27/60 | 75/60 | 60/60
Co(2,t) | 15/60 | 30/60 | 30/60 | 90/60 | 75/60 0 0
C(l,t) 12/60 | 12/60 | 72/60 | 32/60 | 32/60 | 85/60 | 60/60
C(2,t) 0 60/60 | 60/60 | 60/60 | 60/60 0 0
AC(1,t) 0 0 -15/60 | 5/60 5/60 5/60 0
ACQ2,t) | -15/60 | 30/60 | 30/60 | -30/60 | -15/60 0 0

F(A)=2*(-15%15+30*30+30*30-30%90-15*75)/3600+

88




+(-15*87+5*27+5*27+5*75)/3600=-5160/3600.

Setting s(6)=1(6)=1 results in

i [si) |10 [id) | ) [ UGo) | UGY | UG2) | UG3) | UG4) | UGS) | UG6)
12211 1 60/60
2 3] 3] 2 2 60/60 | 60/60
3 s[5 (1 1 60/60
116 |6 |1 1 60/60
s o] 41 1| 12/60 | 12/60 | 12/60 | 12/60 | 12/60
6| 2| 2|2 2 ‘ 60/60 | 60/60
714 |5 |1 1 30/60 | 30/60
| coL,y | 12/60 | 12/60 | 87/60 | 27/60 | 27/60 | 75/60 | 60/60
co2,t) | 15/60 | 30/60 | 30/60 | 90/60 | 75/60 | 0 0
| cLy | 12/60 | 1260 | 72/60 | 12/60 | 42/60 | 95/60 | 60/60
C2.0 0 0 | 600 | 120060 | 60/60 | 0 0
ACLH | 0 0 | -15/60 | -15/60 | 15/60 | 15/60 | 0
AC2,0) | -15/60 | -30/60 | 30/60 | 30/60 | -15/60 | 0 0

F(A)=2*(-15%15-30*30+30*30+30%90-15%75)/3600+
+(-15*87-15%27+15%27+15%75)/3600=2520/3600.

Note that this large positive value means a definite change in quality, as the new schedule
requires two type 2 processors due to C(2,3)=2.
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Starting e(6) in cycle 3 produces a similar collision in cycles 3 and 4:

F(A)y=2*(-15*%15-30*30-30*30+30*90+45*75)/3600+

is@® |10 i@ | W UG,0) | UGD [ UG2) | UG3) | UG4 | UGS) | UG,6)
1 {2 2 1 1 60/60
21 3 3 2 2 ) 60/60 | 60/60
313 5 1 1 60/60
4 | 6 6 1 1 60/60
510 4 1 1 12/60 | 12/60 | 12/60 | 12/60 | 12/60
6 | 3 3 2 2 60/60 [ 60/60
71 3 5 1 1 60/60
Col,ty | 12/60 | 12/60 | 87/60 [ 27/60 | 27/60 | 75/60 | 60/60
CO0(2,6) | 15/60 | 30/60 | 30/60 | 90/60 | 75/60 0 0
C,p 12/60 | 12/60 | 72/60 | 12/60 | 12/60 | 120/60 | 60/60
CQ2,1) 0 0 0 120/60 | 120/60 0 0
AC(L,H) 0 0 -15/60 | -15/60 | -15/60 | 45/60 0
AC(2,t) | -15/60 | -30/60 | -30/60 | 30/60 | 45/60 0 0

+(-15%87-15%27-15%27+45*75)/3600=9360/3600.

The optimum was found at cycle 0, so the scheduling of e(7) starts off from the following

initial scheduling plan:
i|s@ |10 | t(i) UG,0 | UGD | UG2) | UGE3) | UG4 | UGS | UG,6)
1 2 2 1 1 60/60
2 3 3 2 2 60/60 | 60/60
3 5 5 1 1 60/60
4 6 6 1 1 60/60
5 0 4 1 1 12/60 [ 12/60 | 12/60 [ 12/60 | 12/60
60 0 2 2 60/60 | 60/60
7 5 5 1 1 15/60 | 15/60 15/60 15/60
‘ C(L,p) 12/60 | 12/60 | 87/60 | 27/60 | 27/60 | 75/60 | 60/60
c2) | 60/60 | 60/60 0 60/60 | 60/60 0 0
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As e(2) and e(6) are fixed by now, C(2,t) may not change any more. The steps for e(7) and

e(5) are the following:
[ coo | 12/60 | 12/60 | 87/60 | 27/60. ] 27/60 | 75/60 | 60/60 |

Fixing e(7) to cycle 2:
C(1,1) 12/60 | 12/60 | 132/60 | 12/60 | 12/60 | 60/60 | 60/60
AC(L) 0 0 45/60 | -15/60 | -15/60 | -15/60 0

F(A)=(45*87-15%27-15%27-15*75)/3600=1980/3600.

Fixing e(7) to cycle 3:
C(,p 12/60 | 12/60 | 72/60 | 72/60 | 12/60 | 60/60 | 60/60
AC(1,1) 0 0 -15/60 | 45/60 | -15/60 | -15/60 0

F(A)=(-15*87+45*27-15*27-15*75)/3600=-1620/3600.

Fixing e(7) to cycle 4:
C(L,p 12/60 | 12/60 | 72/60 | 12/60 | 72/60 | 60/60 | 60/60
AC(LY) 0 0 -15/60 | -15/60 | 45/60 | -15/60 | 0

F(A)=(-15*87-15*27+45%27-15%75)/3600=-1620/3600.

Note that this plan is equivélent to the previous one as e(7) competes only with e(5) without
data dependency, so e(5) introduces a uniform load on the processors in these cycles. In
other cycles e(7) increases the number of processors needed above 1, which is a waste of
hardware resources.

Fixing e(7) to cycle 5:
C(L,1) 12/60 | 12/60 | 72/60 | 12/60 | 12/60 | 120/60 | 60/60
AC(L,t) 0 0 -15/60 | -15/60 | -15/60 | 45/60 0

F(A)=(-15*87-15%27-15*27+45*75)/3600=1260/3600.

As a minimum was found for F in cycles 3 and 4, we are free to choose one of them. In this

case, due to lack of data dependencies, the choice is irrevelant, so 3 is chosen.
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After fixing e(7) to cycle 3, the initial conditions for e(5) are the following:

HEORROEBONERO) UG,0) | UG | UG6,2) | UG3) | UGad [ UGS | UG,6)
1] 2 2 1 1 60/60
213 3 2 2 ) 60/60 | " 60/60
315 5 1 1 60/60
41 6 6 1 1 60/60
510 4 1 1 12/60 | 12/60 | 12/60 | 12/60 [ 12/60
6 1 0 0 2 2 60/60 [ 60/60
715 5 1 1 60/60
C(L,p 12/60 | 12/60 | 72/60 | 72/60 | 12/60 | 60/60 | 60/60
C(2,t) 60/60 | 60/60 0 60/60 | 60/60 0 0

As we scan time domain from cycle O“to 4, e(5) is either increasing C(1,t) to 60/60 (in cycles
0, 1 and 4) or to 120/60 (in cycles 2 and 3). The F values are: 2160/3600 for an operation
collision (cycles 2 and 3), where the maximum of C(1,t) is increased to 120/60; -1440/3600
for any other cycle (which sets the maximum of C(1,t) to 60/60, resulting in a need of one
processor for type 1 elements.) Operation e(5) may be fixed to any of these cycles, so cycle 0
(global ASAP cycle) is chosen: |

i [ s@) | 10) | j@) |t UG,0 | UG, | UG6,2) | UG3) | UG4) | UGS) | UG6)
1] 2 2 1 1 60/60
213 3 2 2 60/60 | 60/60
315 5 1 1 60/60
41 6 6 1 1 60/60
5[0 4 1 1 60/60
6 10 0 2 2 60/60 | 60/60
71 5 5 1 1 60/60
C(,p 60/60 0 60/60 [ 60/60 0 60/60 | 60/60
C(2,t) 60/60 | 60/60 0 60/60 | 60/60 0 0

This scheduling plan requires one processors for both types, which is an optimal solution as
the system needs 4 units of type 2 processors (t(2)+t(6)=4) and 5 units of type 1 processors
(DG (4)+H(S)+H(T)=5).

An implementation with one type 1 proceésor builds the system with 1*L=7 units of type 1
processors, which means unused 2 units. As only 3 units of type 2 processors are idle, the
solution is optimal.
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10.6.4.2, Force-directed schedulbing, pipelined execution

During pipelined (with R=5) C(j,0)=W(j,0)+W(j,1) and C(j,1)=W(j, )+ W(,6).

i|s@ | 1@ |j0 | | Uao | U6,h | UG6,2) | UG3) | uad) | Ua,s | uae)
1 0 2 1 1 20/60 | 20/60 | 20/60
2 1 3 2 2 20/60 | 40/60 | 40/60 | 20/60
3 3 5 1 1 20/60 | 20/60 | 20/60
4 4 6 1 1 20/60 | 20/60 | 20/60
5 0 4 1 1 12/60 | 12/60 | 12/60 12/60 | 12/60
6 0 3 2 2 15/60 | 30/60 | 30/60 | 30/60 | 15/60
7 2 5 1 1 15/60 15/60 | 15/60 | 15/60
W(,0 | 32/60 | 32/60 | 47/60 | 47/60 | 67/60 | 55/60 | 20/60
WQ2,t) | 15/60 | 50/60 | 70/60 | 70/60 | 35/60 0/60 0/60
C(,t) | 87/60 | 52/60 | 47/60 | 47/60 | 67/60
C(2,t) | 15/60 | 50/60 | 70/60 | 70/60 | 35/60
First operation to be scheduled is e(1):
i (sl [j@ | «) | UG [ U | Ua2) | Ua3) | udd) | Ua,5 | Ua,e)
1 0 0 1 1 60/60
2 1 3 2 2 20/60 | 40/60 | 40/60 [ 20/60
3 3 5 1 1 20/60 | 20/60 | 20/60
4 4 6 1 1 20/60 | 20/60 | 20/60
5 0 4 1 1 12/60 | 12/60 | 12/60 12/60 | 12/60
6 0 3 2 2 15/60 | 30/60 | 30/60 | 30/60 | 15/60
7 2 5 1 1 15/60 15/60 | 15/60 | 15/60
W(L,t) 72/60 | 12/60 | 27/60 | 47/60 | 67/60 | 55/60 | 20/60
W(2,0) | 15/60 | 50/60 | 70/60 70/60 | 35/60 0/60 0/60
Co(L,t) | 87/60 | 52/60 | 47/60 | 47/60 | 67/60
C0(2,6) | 15/60 | S0/60 | 70/60 | 70/60 | 35/60
C(L,t) | 127/60 | 32/60 | 27/60 | 47/60 | 67/60
C(2,t) 15/60 | 50/60 | 70/60 70/60 | 35/60
AC(1,t) | 40/60 | -20/60 | -20/60 0 0
AC(2,t) 0 0 0 0 0
F(A)=(40*87-20*52-20*47)/3600=1500/3600.
s | 16) | i@ | @) | UG | UGD | UG2) | UG3) | UG4) | UGS | UG6)
1 1 1 1 1 60/60
2 2 3 2 2 30/60 [ 60/60 | 30/60
3 4 5 1 1 30/60 | 30/60
4 5 6 1 1 30/60 | 30/60
5 0 4 1 1 12/60 12/60 12/60 12/60 | 12/60
6 0 3 2 2 15/60 | 30/60 30/60 | 30/60 | 15/60
7 2 5 1 1 15/60 15/60 | 15/60 | 15/60
W0 | 12/60 72/60 | 27/60 | 27/60 | 57/60 | 75/60 | 30/60
W2t | 15/60 | 30/60 60/60 | 90/60 | 45/60 0/60 0/60
co(,t) | 87/60 | 52/60 | 47/60 | 47/60 | 67/60
CO0(2,t) | 15/60 | 50/60 70/60 | 70/60 | 35/60
C(Lt) 87/60 | 102/60 | 27/60 | 27/60 | 57/60
C(2,1) 15/60 30/60 60/60 | 90/60 | 45/60
AC(L1) 0 50/60 |.-20/60 | -20/60 | -10/67
AC(2,t) 0 -20/60 | -10/60 | 20/60 | 10/60

F(A)=((50%52-20%47-20*47-10*67)+2*(-20*50-10%70+20*70+10%35))/3600=
=150/3600.




NN A | W N = -

s@ | 10 | jo | @) | UGo) | UG | UGa2) | UG6,3) | Ud4 | UG5 | UaG,e)
2 2 1 1 60/60
3 3 2 2 60/60 |- 60/60
5 5 1 1 60/60
6 6 1 1 60/60
0 4 1 1 12/60 | 12/60 | 12/60 | 12/60 | 12/60
0 3 2 2 15/60 | 30/60 | 30/60 [ 30/60 | 15/60
2 5 1 1 15/60 | 15/60 | 15/60 | 15/60
WL § 12/60 | 12/60 | 87/60 | 27/60 | 27/60 | 75/60 | 60/60
W(2,t) | 15/60 | 30/60 | 30/60 | 90/60 | 75/60 | 0/60 0/60
CO(L,ty | 87/60 | 52/60 [ 47/60 | 47/60 | 67/60
Co2,t) | 15/60 | 50/60 | 70/60 [ 70/60 | 35/60
C,) | 87/60 | 72/60 | 87/60 | 27/60 | 27/60
C(2,t) | 15/60 [ 30/60 | 30/60 | 90/60 | 75/60
AC(1,0) 0 20/60 | 40/60 | -20/60 | -40/60
AC(2,1) 0 -20/60 { -40/60 | 20/60 | 40/60

=-2700/3600.

The best result is to fix e(1) to cycle 2. This results in the following initial plan:

F(A)=((20%52+40*47-20*47-40*67)+2*(-20*50-40*70+20*70+40*35))/3600=

This plan fixes e(2), e(3) and e(4) to their ALAP positions,so

i[s@ [ 1G) | j@ | t@® | UGO) | UGL | UG2) | UG3) | UG | Ua,s | UG,e)

1 1 1 1 1 60/60

212 3 2 2 60/60 | 60/60

31 4 5 1 1 60/60

415 6 1 1 60/60

510 4 1 1 12/60 | 12/60 | 12/60 | 12/60 | 12/60

610 3 2 2 15/60 | 30/60 | 30/60 [ 30/60 | 15/60

71 2 5 1 1 15/60 | 15/60 [ 15/60 [ 15/60
W(,t) | 12/60 | 12/60 | 87/60 | 27/60 | 27/60 | 75/60 | 60/60
W(2.t) | 15/60 | 30/60 [ 30/60 | 90/60 | 75/60 | 0/60 0/60
C(,p | 87/60 | 72/60 | 87/60 | 27/60 [ 27/60
C(2,t) | 15/60 | 30/60 [ 30/60 | 90/60 | 75/60

the next operation to schedule

is e(6). Time cycles are scanned from 0 to 3:

i{si!|1m) i ]| i | ua,o0 | UG | U62) | Ud3) | uad) | Ua,s | uae)
141 1 1 1 60/60
2131 3|2 2 60/60 | 60/60
315 5 1 1 60/60
4|6 6 1 1 60/60
5001 4 1 1 12/60 | 12/60 | 12/60 | 12/60 | 12/60
6| 0 0 | 2 2 60/60 | 60/60
71 2 5 1 1 15/60 | 15/60 | 15/60 | 15/60
W(LY) | 12/60 | 12/60 | 87/60 | 27/60 | 27/60 | 75/60 | 60/60
w2, | 60/60 | 60/60 0 60/60 | 60/60 0 0
co(Lt) | 87/60 | 72/60 | 87/60 | 27/60 | 27/60
CO(2,8) | 15/60 | 30/60 | 30/60 | 90/60 | 75/60
CLy) | 87/60 | 72/60 | 87/60 | 27/60 | 27/60
C2,t) | 60/60 | 60/60 |- 0 60/60 | 60/60
AC(LY) 0 0 0 0 0
ACQ,t) | 45/60 | 30/60 | -30/60 | -30/60 | -15/60

F(A)=2*(45*%15+30%30-30*30-30*90-15*75)/3600=-6300/3600
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F(A)=7290/3600

ifs@ | 1) |jd | i) | UGo [ Uab | UG2) | UG3) | UG4) | UGS | UG6)
1 1 1 1 1 60/60
2 [ 3 3 2 2 60/60 | 60/60
3 5 5 1 1 - 60/60
4 | 6 6 1 1 60/60
5[0 4 1 1 12/60 | 12/60 | 12/60 | 12/60 | 12/60
6 | 1 1 2 2 60/60 | 60/60
77 3 5 1 1 20/60 | 20/60 | 20/60
W@t | 12/60 | 12/60 | 72/60 | 32/60 | 32/60 | 80/60 | 60/60
W(2,t) 0 60/60 [ 60/60 | 60/60 | 60/60 0 0
COo(1,t) | 87/60 | 72/60 | 87/60 | 27/60 | 27/60
Co(2,t) | 15/60 [ 30/60 | 30/60 | 90/60 | 75/60
C(Lt) | 92/60 | 72/60 | 72/60 | 32/60 | 32/60
C(2,t) 0 60/60 | 60/60 | 60/60 | 60/60
AC(L,) | 5/60 0 -15/60 | 5/60 5/60
AC(2,t) | -15/60 | 30/60 | 30/60 | -30/60 [ -15/60
F(A)=-5100/3600
i]s@ | 1) | ja |« | UGo | UdD | UG2) | 06,3 | UG4 | Uas | Ua,e)
1 1 1 1 1 60/60
21 3 3 2 2 60/60 | 60/60
3 5 5 1 1 60/60
4 1 6 6 1 1 60/60
510 4 1 1 12/60 | 12/60 | 12/60 | 12/60 | 12/60
6 | 2 2 2 2 60/60 | 60/60
741 4 S 1 1 30/60 | 30/60
W, | 12/60 | 12/60 | 72/60 [ 12/60 | 42/60 | 90/60 | 60/60
W(2,t) 0 0 60/60 | 120/60 | 60/60 0 0
Co(1,t) | 87/60 | 72/60 | 87/60 [ 27/60 | 27/60
Co2,t) | 15/60 | 30/60 | 30/60 | 90/60 | 75/60
Cd,py | 102/60 | 72/60 | 72/60 | 12/60 | 42/60
C(2,0) 0 0 60/60 | 120/60 | 60/60
AC(Lt | 15/60 0 -15/60 | -15/60 | 15/60
AC(2,t) | -15/60 | -30/60 | 30/60 | 30/60 | -15/60
F(A)=2700/3600
i]s@ [ 1) |j | @ | UG0 | UG | UG2) | UG3) | UG | UG5 | UG,6)
1 1 1 1 1 60/60
213 3 2 2 60/60 | 60/60
3 1°5 5 1 1 60/60
41 6 6 1 1 60/60
510 4 1 1 12/60 | 12/60 | 12/60 | 12/60 | 12/60
6 | 3 3 2 2 60/60 | 60/60
71 5 5 1 1 60/60
W(Lt) | 12/60 | 72/60 | 72/60 | 12/60 | 12/60 | 120/60 { 60/60
W(2,t) 0 0 0 120/60 | 120/60 0 0
Co(1,t) | 87/60 | 72/60 | 87/60 [ 27/60 [ 27/60
C0(2,6) | 15/60 | 30/60 [ 30/60 | 90/60 | 75/60
CLy | 132/60 | 72/60 | -72/60 | 12/60 | 12/60
C(2,t) 0 0 0 120/60 | 120/60
AC(Lt) | 45/60 0 -15/60 | -15/60 | -15/60
AC(2,t) | -15/60 [ -30/60 | -30/60 | 30/60 | 45/60
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As e(6) is fixed to cycle 0, the initial plan for the scheduling of e(7) is

1] s@) [ 16) | j@ | i) | UG | UGaD | UG,2) | UG3) | UG4) | UGS) | UG6)

1 1 1 1 1 60/60

213 3 2 2 - 60/60 | 60/60

3 5 5 1 1 60/60

41 6 6 1 | 1 60/60

510 4 1 1 12/60 | 12/60 | 12/60 | 12/60 | 12/60

61 0 0 2 2 60/60 | 60/60

7| 2 5 1 1 15/60 | 15/60 | 15/60 [ 15/60
WLt § 12/60 | 12/60 | 87/60 | 27/60 | 27/60 | 75/60 | 60/60
W(2,t) | 60/60 | 60/60 0 60/60 | 60/60 0 0

C(,t) | 87/60 | 72/60 | 87/60 | 27/60 | 27/60
C(2,t) | 60/60 | 60/60 0 60/60 | 60/60

As we are after the scheduling of both type 2 operations, the F(A) values are depending only
on the C(1,t) function. The steps for e(7) are:

[ coay | 87/60 | 72/60 | 87/60 | 27/60 | 27/60 |

Fixing e(7) to cycle 2:
C(L,p 72/60 | 72/60 | 132/60 | 12/60 | 12/60
AC(LY | -15/60 0 45/60 | -15/60 | -15/60

F(A)=(-15*87+45*87-15*27-15*27)/3600=1800/3600.

Fixing e(7) to cycle 3:
C(1L,p 72/60 | 72/60 | 75/60 | 72/60 | 12/60
AC(LY) | -15/60 0 -15/60 | 45/60 | -15/60

F(A)=(-15*87-15*87+45%*27-15*27)/3600=-1800/3600.

Fixing e(7) to cycle 4:
C(Lt) 72/60 | 72/60 | 75/60 | 12/60 72/60
AC(Lt) | -15/60 0 -15/60 | -15/60 | 45/60

F(A)=(-15*87-15*87-15*27+45*27)/3600=-1800/3600
Note that this plan is equivalent to the previous one as e(7) competes only with e(5) without

data dependency, so e(5) introduces a uniform load on the processors in these cycles. In
other cycles e(7) increases the number of processors needed above 1, which is a waste of
hardware resources.

Fixing e(7) to cycle 5:
C(,yy | 132/60 | 72/60 | 75/60 | 12/60 | 12/60
AC(1,) | 45/60 0 -15/60 | -15/60 | -15/60

F(A)=(45*87-15*87-15*27-15*27)/3600=1800/3600
As a minimum was found for F in cycles 3 and 4, we are free to choose one of them. In this

case, due to lack of data dependencies, the choice is irrevelant, so 3 is chosen.
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After fixing e(7) to cycle 3, the initial conditions for e(5) are the following:

ils@ 1@ i @ | U60) | U6 | UG2) | UG,3) | Ua4d | UGS | UG6)
1 1 1 1 1 60/60
2 [ 3 3 2 2 60/60 | 60/60
3 5 5 1 1 60/60
4|1 6 6 1 1 60/60
510 4 1 1 12/60 | 12/60 | 12/60 | 12/60 | 12/60
6 (0 0 2 2 60/60 | 60/60
71 3 3 1 1 60/60
W,y | 12/60 | 12/60 | 72/60 | 72/60 | 12/60 | 60/60 | 60/60
W(2,t) | 60/60 [ 60/60 0 60/60 | 60/60 0 0
C,t) | 72/60 | 72/60 | 72/60 | 72/60 | 12/60
C(2,t) | 60/60 | 60/60 0 60/60 | 60/60

As e(5) is the last of the operations, it does not cause a problem with data dependencies. As

we scan time domain in increasing order from O to 4, all cycles between O and R-1 are

1 3 ) scanned. The scheduling results:

For cycles 0, 1, 2 and 3: F(A)=(2*(-12*72)+48*72-12*12)/3600=1584/3600

For cycle 4: F(A)=(3*(-12%72)+48*12)/3600=-2016/3600

Fixing e(5) to cycle 4 sets the final scheduling plan:
ils@ |10 [jo!l « | vao | vab | v6,2 | ua3) | uas | U6s) | uae)
1 1 1 1 1 60/60
- 2 3 3 2 2 60/60 | 60/60
' 3 5 5 1 1 60/60
4 | 6 6 1 1 60/60
5 4 4 1 1 60/60
6 0 0 2 2 60/60 | 60/60
7 3 3 1 1 60/60
W(l,t) 0 0 60/60 | 60/60 | 60/60 | 60/60 [ 60/60
W(2,t) | 60/60 | 60/60 0 60/60 [ 60/60 0 0
C(,H) 60/60 { 60/60 60/60 | 60/60 { 60/60
C(2,¢t) 60/60 | 60/60 0 60/60 | 60/60

Which, with a latency of 7 and restart time of 5 requires one processor of both types (for

comparison: pipeline-aware hardware-bound list scheduling produced L=9).
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1. Introduction

Pipe was developed at the Department of Process Control, Technical University of Budapest,

as an educational software tool for designing pipeline data flow devices.

Pipe uses an elementary operations graph (EOG) where the nodes of the graph denote

elementary operations and the edges their data-interconnections.

Given a predefined restarting period pipe - if necessary - inserts buffers to meat this period.

Synchronisation buffers are also inserted.

Pipes generates different variations of the graph by moving the synchronisation buffers. For
every variation allocation is performed: every elementary operation, that are not working

concurrently may be combined into one unit. Pipe tries to find these units.

The software itself is written in C++ and runs under several variations of the UNIX multiuser

operating system.
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2. Usage

The general format of the invocation of the pipe program is!:
pipe [-s] [-v] [-b]l [-Xd] [-p graphl restart [input_file]

The name of the program is pipe. This should be in a directory which is accessible by the
users (it is in their search path). Some run time parameters may be changed by optional
command line switches following the program name. Their order is not important. Table 1

summarises them.

Switch Explanation

1-s The scheduling is not tight. Care should be taken when using |
this switch as it may increase the number of variation by
several magnitudes.

-V Verbose mode. During the processing additional information
is displayed. This includes the number of variations, number,
place and types of buffers inserted and the current best graph.
-b Buffers are normally excluded from allocation. This switch
' forces buffers to be allocated. This may lead to exponentially
) increased processing times.

-Xd - Activate d debug option. Only valid if pipe is compiled with
debugging enabled. More than one debug option may be
given, to list currently available options use -X-.

-p graph 1 Dump the input graph to a file named graph after inserting
buffers. Useful for debugging.

Table 1.: Command line switches

The only mandatory command line parameter is the restart time which should follow the

switches if any. This should be given as an integer greater than 2.

The last parameter is the name of the input file. If non is given, pipe reads its standard input.

The format of the input is described in detail in section 3.

1 Text in bold should be typed exactly as shown, text in italics should be replaced by appropriate names and

anything between brackets is optional.




3. Input

Pipe uses as simple hardware description language as input. this declares functional elements

and gives the interconnection between them.

The following BNF (Backus-Naur Form) description illustrates pipe’s input language:

graph = graphid iodesc fedesc graphdesc outcn
graphid := GRAPH : name

iodesc := doitem | iodesc ioitem;

ioitem := INPUT namelist | OUTPUT namelist;

namelist := NAME | namelist , name;

fedesc := feitem | fedesc feitem;

feitem := PROCESSOR NAME INPUT: NUMBER DELAY: NUMBER |

PROCESSOR NAME DELAY: NUMBER INPUT: NUMBER|
PROCESSOR NAME, NUMBER NUMBER;

name FEname (signallist);

signal

]

signallist : siglistelem | siglist , sigelem;
INPUTname | SIGNALname;

OUTname SIGNALname;

siglelem :

outcn :

3.1 Keywords and Identifiers

Inputs, outputs, processors (graph nodes) and interconnections (graph edges) are identified by
identifiers of the maximum length of 32 characters?. They may contain alphanumerical (a-z,
0-9) characters and underscore. the first character can not be numeral. Case is insensitive3.

Forward declarations are not allowed.

The following keywords are reserved, and may not be used as an identifier: graph, input,

output, processor, delay, out. Words are separated by blanks and/or tabs.

3.2 Graph declaration

The graph’s name is declared by the graph keyword followed by a colon and the name of the
graph. The following line declares a graph named my_graph:

graph: = my graph

2 This is a compile time option, and may be changed.

3 Also a compile time option.
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3.3 /O declarations

Inputs are outputs are declared by the input’and output keywords, with the I/O identifiers
separated by commas. This example declares in_a, in_b as an input and ouf x as an output:
input: in a, in b

output: out x

3.4 Processor declarations

The processor keyword is used to declare processing elements. Two properties have to be
given here: the number of inputs and the delay (time from valid input to valid output). The
following three lines are all valid declarations of a processor named sum with 4 inputs and a

delay of 10:

processor sum 10 4
processor sum delay: 10 input: 4

processor sum input: 4 delay: 10

3.5 Processor.instantiations

Processors are instantiated in a form similar to a function call: the arguments are the inputs,
the value of the function is the output. Inputs may be named, i.e. using the output of a
- previously instantiated processor, or unnamed, when the input is an other processor. In this

example a processor (divide) takes mI and m2 as an input and its output is named as result:

result divide(ml, m2)

Of course, the processor divide has to be defined in a processor statement, and must have

exactly two inputs.

In a similar fashion, divide takes ml as one input and the output of decrement as the other

input: .

result  divide(ml, decrement(m2))

3.6 Output connections

The outputs declared with the output keyword. have to be connected to processor outputs. This

line connects result to out x:

out x result
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4. Output

Pipe’s output contains the result of allocation: which functional elements are combined into

one.

The result is a table showing which elementary operations have been allocated into one

processor. The following listing is a sample output from the FIR example (section 3.).

Processor number 10 and 13 contain two operations (aa2, aa7 and aa5, aa6), all the other
processors contain only one. Note that allocation does not attempt to deal with operations that
will not fit into one processor: in this case multipliers are not allocated, because their delay is

more than half restart period. However their number is still given in the results listing.

———————————— Results of the allocation -------—--

Proc 1 => (al,adder?2)

Proc 2 => (a2,adder?)

Proc 3 => (a3,adder2?)

Proc 4 => (ad,adder?)

Proc 5 => (ab5,adder2)

Proc © => (a6,adder2)

Proc 7 => (a7,adder?)

Proc 8 => (a8,adder?2)

Proc 9 => (aal,adder?2)

Proc 10 => (aa2,adder2) (aa7,adder2)

Proc 11 => (aa3,adder?)

Proc 12 => (aad,adder?)

Proc 13 => (aab,adder2) (aab6,adder?)
)

Proc 14 => (aa’7,adder2
Processor: adder2 -- 14
Processor: mult -~ 8

Number of buffers: 56




5. Example

- -

i' The FIR filter (see the graph below) is a simple device containing adders and multipliers.
int in2 in3 ind4d in5 N6 in7 in8

$IEEELE

jololololololo)]

mb

out
aal aa2 aa3 aa4d aab aab aa7
The following listing describes the FIR filter for pipe.
Graph: FIR FILTER
Input: inl, in2, in3, in4, in5, in6, in7, in8
Output: out
Processor adderl delay: 2 input: 1
Processor adder? delay: 2 input: 2
Processor mult delay: 5 input: 1
ml mult (adderl (inl))
m2 mult (adderl (in2))
m3 mult (adderl (in3))
mé4 mult (adderl (ind))
mb mult (adderl (inb))
moé mult (adderl (iné6))
m7 mult (adderl (in7))
m8 "mult (adderl (in8))

aal adder2 (ml, m2)
aa?2 addexr?2 {aal, m3)
aa3 adder? (aa2, m4)
aad4d adder2 (aa3, mb)
aab adder? (aad, mb6)
aa6 adder?2 (aab, m7)
aa’l adder?2 (aa6, m8)
out aa’
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6. Installing and porting

Pipe is distributed in C++ source. To compile, you will need the followings:

e A UNIX or UNIX like operating system®. Pipe is verified to work under SunOS 4.1, HP-
UX 8, HP-UX 9 and NetBSD-1.0.

e A C++ compiler. During development the Free Software Foundation’s G++ compiler’

(versions 2.5.4 and 2.7.0) was used.

e Yacc or equivalent compiler-compiler. The precompiled grammar is provided in the file
gram. cc. If you do not make changes in the grammar file, it is possible to install pipe

without yace.
First unpack the compressed tar archive using the following command:
zcat pipe.tar.Z2 | tar xvf -

This should create a directory named pipe. Go to this directory. There is a configuration

script, run it:

./configure

If necessary, edit the file conf . h, it contains some values that you might width to change.
Start compilation:

make

After a while an executable named pipe should appear. Move this file where other users can

access it.

Pipe was written by having portability a goal. However due to some incompatibility between
the different UNIX systems, you may have to change the source. These changes should not
difficult.

4 Pipe was compiled under MS-DOS, but is not guaranteed to work because the awkward memory
management scheme of this system. It would probably mean little trouble to compile it under OS/2 or

Windows NT.

5 Available on the Internet from prep.ai.mit.edu via anonymous ftp.
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Benchmarks

This report summarises the works has been ‘done at the Technical
University of Budapest, Department of Process Control on the field of high-level
synthesis. The benchmarks that can be found on the next pages has been worked
out for the students of the course which name is High-Level Synthesis of digital
designs. The students had 1 month to solve the problems as it is defined on each
cover page. The students worked in pairs. Every group had to solve 8 problems:

1. The Data-Flow Graph
( Generating a DFG -or Elementary Operation Graphf EOG- from the textual
description of the task)
2. The VHDL Behavioral Description
3. The Input File of the WinSam
4. WinSam Results
(The WinSam is a test version of a force-directed based HLS tool has been
developed by a Ph.D. student in the Process Control Department)
S. The Input File of the PIPE
6. PIPE Results
(see Users Manual)
(One student has to solve points 3 and 4, while the other has to complete points 5
' and 6.)
7. The Scheduled Data-Flow Graph
(The students has to choose one solution and has to generate the DFG of the
scheduled and allocated structure.)
8. Structural VHDL Description




II.
III.

IV.

VL.
VIIL.

VIIIL.

Contents

Elliptic Filter
FIR Filter
Aproximation of an Angles Cosinus
Aproximation of an Angles Sinus
Fast Fourier Transformation
Expansion of a 3*3 Determinant
Differential Equation Solver

Conclusion




Elliptic Filter

Design a unit which can solve the 5™ order elliptic filtering. The unit should work with
pipelined restarting period.
To solve the problems only the following elementary operations can be used:
Buffer, INC, DEC, +, -, *, DIV, MOD
The execution timeratios are ( in the same order ) :
1/2/72/74/4/ 87/ 12/ 12][clock cycle]

Tasks

The list of the students is located in the SEEGER server in the.
\U\GUEST\LOGIC\NAGYHF SUBDIRECTORY. In order to solve the following problems the
first students in the list should use the WinSam, and the second ones should use the PIPE design
tool. The subdirectories, where the design tools can be found, have the same name as the design
tool has: .

Solve the following problems
a) generate the Data-Flow Graph (DFG) from the problem
b) produce the behavioral description of the DFG in VHDL
¢) produce the description of the DFG in the hardware description
language (HDL) of the given design tool (PIPE or WinSam)
d) Run the design tool with the input file that was generated in point c) with
different parameters such as:

. WinSam: (restart_s/restart_f) 14/16. 14/18, 14/20, 16/16.
16/20:
. PIPE: 14, 16, 18, 20, 22;

e) compare the results, analise the reasons of the output results and propose

~ amoution of the best design.

f) produce the structural description of the resulted structure and its controle in VHDL.
g) simulate the structural VHDL description was produced in point f)

The format of the ideal solution
a) The format of the report must be Win Word 2.0
< b) The coverpage should contain:
. title of the task
) name and group of the student
c) The format of the pictures must be PCX
d) The final file (report) should be copied into the directory:
/U/GUEST/LOGIC/BEAD
(Once a file was created it cannot be deleted, but a second copy with
different name might be accepted.)
e) The name of the file must be: second_name.DOC
f) The date of the handing in is the date when the file is created.

The deadline of the handing in is the last day of the semester !




1.

The Data-Flow Graph
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2. The VHDL Behavioral Description

ENTITY IIR IS
PORT ( S1, S2, S3, S4, S5, 6, S7, S8 : IN INTEGER; J20, J21, J19, J13,
MO8, J26, M07 : OUT INTEGER );
END IIR; :
SIGNAL

J01, J02, JO3, J04, JOS, JO, JO7, JO8, J09, J10, J11,312, J13, J14, J15, J16, J17,
118, 119,720,721, J22, J23, J24, MO1, M02, M03, M04, M05, M06, M07,
MOS:INTEGER; :

CONSTANT
W1, W2, W3, W4, W5, W6, W7, W8: INTEGER,;

ARCHITECTURE FUNC OF IIR IS

JO1 <=81 + S2 AFTER 4NS;
J02 <= 85 + S6 AFTER 4NS;
J03 <=J01 + S3 AFTER 4NS;
J04 <=J02 + S7 AFTER 4NS;
JO5 <=J03 + S4 AFTER 4NS;

J06 <=J04 + S8 AFTER 4NS;
JO7 <=J05 + J06 AFTER 4NS;
J08 <=J03 + MOl AFTER 4NS;
J09 <=1J03 + JO8 AFTER 4NS;
J10 <=M02 + J06 AFTER 4NS;

J11 <=J08 + JO7 AFTER 4NS;
J12 <=J10 + J06 AFTER 4NS;
J13 <=J11 +J10 AFTER 4NS;
J14 <=J01 + M03 AFTER 4NS;
J15 <=J01 + J14 AFTER 4NS;

J16 <=J14 + M03 AFTER 4NS;
J17 <=J16 + S11 AFTER 4NS;
J18 <=S12 + M04 AFTER 4NS;
J19 <=MO05 + J06 AFTER 4NS;
J20 <=J18 + J14 AFTER 4NS;

J21 <=1J17 + J19 AFTER 4NS;
J22 <= MO06 + S9 AFTER 4NS;
J23 <=J10 + J22 AFTER 4NS;
J24 <=J22 + S10 AFTER 4NS;




J25 <=J02 + J23 AFTER 4NS;
J26 <=J22 + M07 AFTER 4NS;

MO1 <=J07 * W3 AFTER 8NS;
MO02 <=J07 * W1 AFTER 8NS;
MO03 <= W8 * J0O9 AFTER 8NS;
M04 <= W7 * J15 AFTER 8NS;
MO05 <=1J17 * W6 AFTER 8NS;
MO06 <=J12 * W2 AFTER 8NS;
MO07 <=J24 * W4 AFTER 8NS;

MO8 <= W5 * J25 AFTER 8NS;

END FUNC;




. 3. The Input File of the WinSam

restart_s : 20

restart_f: 28

net_num: 1

cover_num: 1

sync_weight: 99

max_net: 1

step : 1

not_same : 1

add_time : 0 _
in,0,0,0,0,8:add1,add1,add3,add5,add2,add2,add4,add6
addl1 4,1,0,2,3:add3,add14,add15
add?2 4,1,0,2,2:add4,add25

add3 4,1,0,2,3:add5,add8,add9
add4 4,1,0,2,1:add6

add5 4,1,0,2,1:add7

add6 4,1,0,2,3:add7,add10,add12
add7 4,1,0,2,5:mul1,mull,add11,mul2,mul2
adds8 4,1,0,2,2:add9,add11

add9 4,1,0,2,2:mul3,mul3

add10 4,1,0,2,3:add12,add13,add23
addl1 4,1,0,2,1:add13

add12 4,1,0,2,2:mul6,mul6

add13 4,1,0,2,1:0ut

add14 4,1,0,2,3:add15,add16,add20
add15 4,1,0,2,2:mul4,mul4

add16 4,1,0,2,2:add17,add17
add17 4,1,0,2,3:add21,mul5,mul5
add18 4,1,0,2,1:add20

add19 4,1,0,2,2:add21,out -
add20 4,1,0,2,1:0ut

add21 4,1,0,2,1:out

add22 4,1,0,2,4:add23,add26,add24,ad24
add23 4,1,0,2,1:add25

add24 4,1,0,2,2:mul7,mui7

add25 4,1,0,2,3:out,mul8,mul8
add26 4,1,0,2,1:0ut
mull,12,1,0,2,1:add8
mul2,12,1,0,2,1:add10
mul3,12,1,0,2,1:add14,add16
mul4,12,1,0,2,1:add18,add18
mul5,12,1,0,2,1:add19 _
mul6,12,1,0,2,1:add22,add22
mul7,12,1,0,2,1:add26,out
mul8,12,1,0,2,1:0ut




out,0,0,0,8,0:




4. WinSam Results
restart_s restart_f elements buffers
14 18 27 39
16 16 30 38
14 20 27 41
16 20 27 41
20 20 31 17
14 24 26 34
16 24 26 34
20 24 32 15
24 24 32 15
14 28 22 28
16 28 22 28
20 28 25 9
24 28 25 9
28 28 25 9
16 30 21 25
20 30 26 5
24 30 26 5
28 30 26 5
30 30 26 5




| 5. The Input File of the PIPE

graph: ellip
input: s1,s2,s3,54,s5,56,57,58
output: t20,t21,t1,t13,t8,t2,t26,t3

processor add 4 2
processor mul 8§ 2
j1 add(s1,s2)

J2 add(s5,s6)

j3 add(j1,s3)

j4 add(j2,s7)

j5 add(j3,s4)

j6 add(j4,s8)

j7 add(j5,j6)

ml mul(j7,j7)
m2 mul(j7,j7)
j8 add(j3,m1)
j10 add(j6,m2)
j9 add(j3,j8)

j11 add(j8,j7)
j12 add(j10,j6)
m3 mul(j9,j9)
j13 add(j11,j10)
m6 mul(j12,j12)
j14 add(j1,m3)
j22 add(m6,m6)
j15 add(j1,j14)
j16 add(j14,m3)
j23 add(j10,j22)
j24 add(j22,j22)
m4 mul(j15,j15)
j17 add(j16,j16)
. j25 add(j2,j23)
e m7 mul(j24,j24)
j18 add(m4,m4)
mS mul(j17,j17)
m8 mul(j25,j25)
j26 add(j22,m7)
j20 add(318,j14)
j19 add(m5,m5)
j21 add(j17,j19)
t1j19

2 j25

t3 m7

20 j20

t21;j21




t13j13
t8 m8
t26 j26




PIPE Results

‘R Processors Buffers
5 34 540
10 32 466
20 23 - 244
30 16 145
40 16 115
50 13 71
60 10 56




7. The Scheduled Data-Flow Graph -




8. Structural VHDL Description: -

PACKAGE Global IS
SIGNAL CLK:Integer:=0;

SIGNAL buf0_en:Integer:=0;
SIGNAL bufl_en:Integer:=0;
SIGNAL buf2_en:Integer:=0;
SIGNAL buf3_en:Integer:=0;
SIGNAL buf4_en:Integer:=0;
SIGNAL buf5 en:Integer:=0;
SIGNAL buf6 _en:Integer:=0;
SIGNAL buf7_en:Integer:=0;
SIGNAL buf8_en:Integer:=0;

SIGNAL add01_en:Integer:=0;
SIGNAL add02_en:Integer:=0;
SIGNAL add03_en:Integer:=0;
SIGNAL add04_en:Integer:=0;
SIGNAL add05_en:Integer:=0;
SIGNAL add06_en:Integer:=0;
SIGNAL add07_en:Integer:=0;
SIGNAL add08_en:Integer:=0;
SIGNAL add09_en:Integer:=0;
SIGNAL add10_en:Integer:=0;
SIGNAL add11_en:Integer:=0;
SIGNAL add12_en:Integer:=0;
SIGNAL add13_en:Integer:=0;
SIGNAL add14_en:Integer:=0;
-SIGNAL add15_en:Integer:=0;
SIGNAL add16_en:Integer:=0;
. SIGNAL add17_en:Integer:=0;
SIGNAL add18_en:Integer:=0;
' SIGNAL add19_en:Integer:=0;
SIGNAL add20 en:Integer:=0;
SIGNAL add21_en:Integer:=0;
SIGNAL add22 en:Integer:=0;
SIGNAL add23_en:Integer:=0,
SIGNAL add24_en:Integer:=0;
SIGNAL add25_en:Integer:=0;
SIGNAL add26_en:Integer:=0;

SIGNAL mull_en:Integer:=0;
SIGNAL mul2_en:Integer:=0;
SIGNAL mul3_en:Integer:=0;




SIGNAL mul4_en:Integer:=0;
SIGNAL mul5_en:Integer:=0; -
SIGNAL mul6_en:Integer:=0;
SIGNAL mul7_en:Integer:=0;
SIGNAL mul8 en:Integer:=0;

CONSTANT period:Integer:=28;

CONSTANT buf0_ofs:Integer:=25;
CONSTANT bufl_ofs:Integer:=29;
CONSTANT buf2_ofs:Integer:=33;
CONSTANT buf3_ofs:Integer:=5;
CONSTANT buf4_ofs:Integer:=9;
L CONSTANT buf5_ofs:Integer:=9;
S CONSTANT buf6_ofs:Integer:=29;
SR CONSTANT buf7_ofs:Integer:=53;
CONSTANT buf8_ofs:Integer:=49;

CONSTANT addO01_ofs:Integer:=0;
CONSTANT add02_ofs:Integer:=0;
CONSTANT add03_ofs:Integer:=4;
CONSTANT add04_ofs:Integer:=4;
CONSTANT add05_ofs:Integer:=8;
S CONSTANT add06_ofs:Integer:=8;
N CONSTANT add07 ofs:Integer:=12;
CONSTANT add08_ofs:Integer:=28;
CONSTANT add09_ofs:Integer:=32;
CONSTANT add10_ofs:Integer:=28;
CONSTANT addl1_ofs:Integer:=32;
CONSTANT add12_ofs:Integer:=32;
CONSTANT add13_ofs:Integer:=36;
CONSTANT add14_ofs:Integer:=48;
"CONSTANT add15_ofs:Integer:=52;
CONSTANT add16_ofs:Integer:=52;
" CONSTANT add17_ofs:Integer:=56;
CONSTANT add18_ofs:Integer:=68;
CONSTANT add19_ofs:Integer:=72;
CONSTANT add20_ofs:Integer:=72;
CONSTANT add21 ofs:Integer:=76;
CONSTANT add22_ofs:Integer:=48;
CONSTANT add23_ofs:Integer:=52;
CONSTANT add24_o